Index

accident risk, actions reported 20
Ackerman, F. 228, 236
Aden, J. 94, 128
Aghion, P. 201
Ahmad, S. 143
Ahuja, G. 26, 213, 215, 219, 225, 228, 239, 243
air pollution reductions 231
Alchian, A.A. 217, 226
Andrews, D.W.K. 53, 55
Anton, W.R.Q. 12, 19, 22, 48, 50, 94, 95, 128
appropriation of rents 179–80
Arimura, T.H. 169, 192
Armstrong, J. 51
Arora, S. 12, 128, 213, 215, 217, 221
Arrow, K.J. 179
Ashford, J.R. 227
Bansal, P. 37, 215
Barney, J.B. 40, 66
Basset, G. 50, 57
Becker, B. 178
Beise, M. 180
benefits
 of environmental management 97
 of improved environmental performance 214–16
bivariate probit, models 117–18
Blackman, A. 128
Boyd, J. 128, 145, 169
Brazil, regulatory pressure impact 94
Brooks, N. 12
Brown, R.L. 38
Brunnermeier, S.B. 147, 157, 174
business performance
 and comprehensiveness of environmental measures 55, 59
 and environmental commitment 62
 and environmental initiatives 37
 and environmental R&D budgets 158
 likelihood of assigning responsible person 54
 and likelihood of implementing EMS 52
 Buzzelli, D.T. 39
CaC (command-and-control) regulations 174, 183, 187, 200
Canada
 comprehensiveness of environmental measures 57
 designation of person responsible for environmental matters 54
 EMS certification 62–3
 environmental R&D 150
 location of person responsible for environmental matters 16
 capital availability, and environmental performance 91
 capital stock turnover, and environmental performance 91
 Carraro, C. 180, 182
 Carrol, A.B. 215
 Cason, T.N. 12, 128, 213, 215, 217, 221
catalytic converters 176
certification of EMS by country 48
determinants of certifying 35, 46–8, 54–5
 and environmental initiatives 39–40
 and environmental performance 124, 127
 and government pressure 63
changes in production processes, see CPP
China, inspection frequency 94
Christiansen, G.B. 214, 216, 243
clean sectors 236–8, 245
Cleff, T. 183
Clelland, I. 215
code-of-conduct programmes, and environmental initiatives 41

270
Coglianese, C. 11, 34, 101, 105, 128
Cohen, M.A. 12, 26, 34, 39, 96, 128, 147, 157, 174, 215, 217, 219, 220, 243
Cohen, W.M. 179, 180
command-and-control (CaC) 174, 183, 187, 200
Conrad, K. 214, 216, 243
consumer proximity, and environmental performance 91
Cormier, D. 12, 213, 219
corporate reputation 215
cost savings
and CPP vs EOP 187, 190
and environmental performance 22, 24
CPP (changes in production processes)
actions taken 23
definitions 174, 177
as measure of innovation 3
vs EOP 174–5, 185–201
vs product design 24
Cramer, J.S. 45
customer pressure
and comprehensiveness of environmental measures 59
and EMS certification 54
and environmental commitment 62
and environmental initiatives 38–9
Czarnitzki, D. 179
Damon, L.A. 26, 215, 220, 239, 243
Darnall, N. 34, 63, 216, 218, 243, 245
Dasgupta, S. 19, 93, 94, 95, 96, 97, 128
database
coverage 4–7
limitations 4, 51–2, 260–61
Davies, T. 248
Dean, T.J. 38
DeCanio, S.J. 1, 14, 128, 149
Deily, M.E. 22, 128
Delmas, M. 46
demand growth, and environmental R&D budgets 161
Demsetz, H. 217, 226
Denison, E.F. 214, 216, 243
designation of person responsible for environmental matters
and CPP vs EOP 190, 192
determinants 35, 45, 54
and environmental accounting
adoption 163–4
impact 121
implementation by country 45–6
institutional location of 23
and relationship with EMS 124
significance in SMEs 125
dirty sectors 236–8, 245
Dosi, G. 181
Downing, P.B. 182
eyearly movers 238–9, 245; see also first movers
Earnhart, D. 22, 128
Eckert, H. 22
EMAS (Eco-Management and Audit Scheme) 47
employee numbers, and comprehensiveness of measures 59
employee pressure
and comprehensiveness of measures 59
and environmental initiatives 39
EMS (environmental management systems)
costs 100
by country 44
determinants of certifying 35, 46–8, 54–5
determinants of comprehensiveness 35, 48–51, 55–60
and determinants of designating person responsible for environmental matters 35, 45, 54
determinants of implementing 35, 44–5, 52–4
and environmental accounting adoption 163–4, 167
by firm size 14
impact on environmental performance 22–3, 90, 122–3
prevalence 14
probability of implementation 18–20
reasons for promotion of 88–9
EMS adoption choice, modelling framework 100–102
EMS decisions, and environmental performance decisions 102–3, 104–9
EMS modelling
 avoiding endogeneity 108–9
 self-selection problem 104–6
EMS-promoting incentives 19
EMS-promoting policies 115–16
end-of-pipe, see EOP
endogeneity, dealing with 105–6
endogenous switch models 118–19
Enroth, M. 128
environmental accounting 112, 167
 and CPP vs EOP 190
 and environmental R&D budgets 154–5, 156, 161, 162–5, 167
environmental actions, reported 20–22, 110–12
environmental–commercial win–wins 26, 28, 218–24
environmental groups’ pressure
 and comprehensiveness of environmental measures 55, 59
 and impact on environmental performance 62, 63, 187
 and likelihood of implementing EMS 52
 prompting environmental initiatives 39
environmental incidents 187
environmental innovation typology 175–7
environmental management
 and CPP vs EOP 95–6
 relationship to environmental performance 112–13
 reported 112–13
environmental management practices
 and innovation 148–9
environmental management systems, see EMS
environmental management tools
 and CPP vs EOP 187, 190
 impact 94
 reported 14–15
environmental performance 92, 110–12
environmental policy 113–16
environmental policy measures
 direct and indirect effects 106–8
 and perception 113
environmental policy stringency and innovation 147
environmental practices, number per facility 22–3, 122–3
environmental R&D
 data reliability 151–3
 and environmental initiatives 37
environmental R&D budgets
 and certification 54
 and comprehensiveness of measures 55, 59
 data reliability 161
 in database 25
 and environmental accounting 154–5, 156, 161, 162–5, 167
 and environmental commitment 62
 and facility size 150
 and inspection frequency 153
 likelihood of implementing EMS 52
 by sector 150
 and stringency 150, 156–7, 167–8
environmental taxes, see input taxes; pollution taxes
EOP (end-of-pipe)
 actions taken 23
 definitions 174
 vs CPP (changes in production processes) 174–5, 185–201
equity source, and environmental performance 91
exhaust-gas cleaning 176
export-orientation, and environmental initiatives 37
facility size
 and comprehensiveness of environmental measures 55
 and EMS certification 54
 and environmental accounting adoption 165
 and environmental initiatives 37
 and environmental R&D budgets 158
 and implementation of EMS 112
Feldman, I. 46
Ferraz, C. 94, 96
financial support, as EMS-promoting incentive 19, 116, 123, 127
firm characteristics, and environmental performance 91–2
firm size, and environmental performance 91
firms, internal workings, importance of 1–2, 88
first movers 181, 216, 243; see also early movers
Fischer, C. 182
foreign head office
and comprehensiveness of environmental measures 59–60
and environmental commitment 63, 65
and environmental initiatives 40
and likelihood of implementing EMS 52
foreign ownership, see foreign head office
France
and certification 55
and comprehensiveness of measures 57
CPP vs EOP 23
EMS-promoting incentives 116
environmental R&D 150
instrument types 12
management responsibility 16
perceived environmental policy regime stringency 8
Freeman, R.E. 38, 66
Friedman, M. 214, 216, 243
Frondel, M. 179, 182, 183
Gabel, H.L. 1, 14, 144
Gallagher, K. 228, 236
Gangopadhyay, S. 215
geographic origins, and environmental performance 91
Germany
and certification 55
and comprehensiveness of measures 57
CPP technologies 183–4
CPP vs EOP 23, 192, 199–200
EMS reported 112
environmental accounting 15, 112
environmental R&D 150
EOP technologies 178
firm size of respondents 7
instrument types 11
likelihood of assigning responsible person 54
prevalence of EMS 14
product innovations 184
Geroski, P.A. 180
Ghemawat, P. 37, 218, 226
Gillet, R. 220
global pollutants 20, 231
government environmental assistance programmes, see technical assistance programmes
government pressure
and certification 63
and likelihood of implementing EMS 52
Gray, B. 215
Gray, W.B. 22, 93, 96, 128
green firms 214–16
Green Lights programme 149
Greene, W.H. 227
Greening, D.W. 215
Greeno, J.L. 39
Griliches, Z. 145
Grundmann, T. 178
Hallock, K. 57
Hamilton, J.T. 12, 219, 220
Hardin, J. 246
Harrington, W. 29, 107
Hart, S.L. 26, 213, 215, 219, 225, 228, 239, 243
Hartman, R. 12, 97, 128
Hauff, M. von 183
Haufy, E. 93, 96
Haveman, R.H. 214, 216, 243
head office pressure
and comprehensiveness of environmental measures 59
and CPP vs EOP 187
and EMS certification 54
and environmental commitment 60–62
and environmental initiatives 38
Heckman, J. 47
Heisey, D.M. 220
Helland, E. 39, 43
Hemmelskamp, J. 128, 148, 179
Henderson, R. 215
Henriques, I. 18, 34, 38, 39, 40, 42, 43, 63, 128, 217, 218
Index

high-growth industries 239–42
Hibiki, A. 192
Hilbe, J. 246
Hitchens, D. 182
Hoenig, J.M. 220
Horbach, J. 182, 184
Hosmer, D.W., Jr 53, 55
Howitt, P. 201
Hungary
and comprehensiveness of environmental measures 57
and CPP vs EOP 192, 199–200
and EMS certification 48, 55
and EMS implementation 14, 44, 112
EMS-promoting incentives 116
inspection frequency 114
likelihood of designating person responsible for environmental matters 54
policy instrument types 9–10, 12
product innovations 184
public environmental reports 112
role of NGOs 13
Hunter, T. 37
incineration 176
industry sector
and environmental innovation 180–81
and environmental R&D budgets 159
information provision 12
influence in Hungary 10
innovation
CPP as measure of 3
environmental innovation typology 175–7
and environmental performance 2
and industry sector 180–81
measures of 3, 145
and policy stringency 147
and Porter Hypothesis 181
R&D as measure of 3, 145
see also literature; product innovations
innovation rents 180
input taxes
and CPP vs EOP 190
flexibility 157
negative impact 22, 120–21, 123, 127–8, 262
triggering cleaner technologies 190, 200, 263
inspection frequency
China 94
and comprehensiveness of environmental measures 55, 59
and environmental R&D budgets 153
and impact on environmental performance 21–2, 39, 62, 67, 93, 94, 114–15, 119–20, 123, 126
Japan 8, 114
and likelihood of designating person responsible for environmental concerns 54
US 114
inspection frequency reduction, as EMS-promoting incentive 19, 116, 123, 127
internal audits, and CPP vs EOP 186, 190
international market exposure, and environmental performance 91
ISO 14000, impact 94
ISO 14001
early adopters in Japan 149
ISO 9000 and 39–40, 47
number of facilities reporting 14
requirements 46
ISO 9000
ISO 14001 and 39–40, 47
Jaffee, A.B. 142, 143, 147, 148, 158, 168, 174, 180, 181, 214, 216, 243
Janz, N. 179
Japan
and comprehensiveness of environmental measures 57
CPP technologies 183
CPP vs EOP 23, 200
designation of person responsible for environmental matters 45, 54, 152
and EMS certification 55
EMS implementation 44
EMS-promoting incentives 116
environmental management responsibility 15–16
environmental R&D 150
inspection frequency 8, 114
ISO 14001 early adoption 149
likelihood of implementing EMS 52–4
perceived environmental policy regime stringency 8, 192
performance benchmarking 112
policy instrument types 9
survey response numbers 57
technology-based standards 113
tests of robustness on environmental performance 125–6
Johnstone, N. 12, 18, 22, 23, 25, 91, 92, 94, 95, 128, 162, 177, 178

Kerekes, S. 199
Kerr, S. 148
Khanna, M. 12, 19, 26, 128, 215, 220, 239, 243
King, A.A. 26, 37, 42, 62, 93, 96, 228
Klassen, R.D. 215, 220, 243
Koenker, R. 50, 57
Kokubu, K. 145
Kolk, A. 100
Konar, S. 12, 26, 96, 128, 215, 217, 219, 220, 243
Labonne, J. 18, 23, 25, 162, 177
Lanjouw, J.O. 147
Lanoie, P. 12, 220
Laplante, B. 22, 39, 93, 96, 220
Lave, L.B. 214, 216, 243
Lefebvre, L.A. 128
Lemeshow, S. 53, 55
Lenox, M.J. 26, 93, 96, 228
letters, see warning letters
Levy, D.L. 93, 96, 128, 213, 219
Lizal, L. 128
logit model 45
low-growth industries 239–42
Lucas, R.E. 128
Lyon, T.P. 107
McClosekey, P.F. 214
McLaughlin, C.P. 215, 220, 243
Magat, Wesely A. 39, 43, 93, 96
management practices 18
management responsibility 15–18
managerial implications 66
Mani, M. 228, 236
Mansfield, E. 180
market-based instruments 182; see also input taxes; pollution taxes; tradeable permits
market-pull factors 179
market structure and environmental R&D budgets 158 and innovation 180
Marshall, M.E. 215
Martin, P. 128
Maxwell, J.W. 107
Mayer, D.W. 215
Mazurek, J. 214
Melnyk, S.A. 37, 42
Milgrom, P. 37, 42
Milliman, S.R. 182
Mintz, J. 34
Mintzberg, H. 37, 42
Mitchell, R.K. 38, 66
Mitchell, W. 215
Mitroff, I. 215
Mody, A. 147
Montero, J.-P 182
Morrison, C.J. 214, 216, 243
Nakamura, Masao 37, 39, 40, 42, 43, 46, 63, 149, 218, 225, 227
Nash, J. 11, 34, 101, 105, 128
natural resource use and comprehensiveness of environmental measures 55, 59 and EMS certification 54 and environmental commitment 62 and environmental initiatives 40 and likelihood of implementing EMS 52
Neale, N.A. 37, 42
Nelson, R.A. 128
Newell, R.G. 148
non-OECD countries, studies 94
non-response bias 51–2
Norsworthy, J.R. 214, 216, 243
Northcraft, G.B. 37, 42
Norway and EMS certification 55 environmental R&D 150 likelihood of designating person responsible for environmental matters 54
Index

likelihood of implementing EMS 52–4
management responsibility 16
public environmental reports 112
Nunnally, J.C. 248

Oliver, C. 217, 218, 226
Ottman, J. 215
Overton, T. 51

Palmer, K. 142, 147, 168, 181, 214, 216, 243
Pargal, S. 12, 128
Pavitt, K. 179, 181
Pavlitchev, A. 63
Peng, H.W. 51
performance benchmarking 112
performance standards
and CPP vs EOP 190
impact 120, 123
influence 113, 127, 127–8
Performance Track Program 41
permits 148
Pfeiffer, F. 182
policy implications 66–7, 260–65
policy instrument choice
by country 9–12
impact on environmental performance 22, 27
and innovation 148
policy stringency
CPP vs EOP 192
and environmental accounting adoption 163
and environmental R&D budgets 150, 156–7, 167–8
impact 22, 26, 93, 94, 113–14, 119, 123
importance 27
and innovation literature 147
see also Porter Hypothesis
new technology adoption 148
perceived 8
significance 126
pollution abatement choice determinants 185–91
costs 97
and patents 147
as proxy for environmental performance 97
pollution taxes
and CPP vs EOP 190
impact 120
Popp, D. 148
Porter Hypothesis
and innovation 181
narrow version 143, 157, 168
strong version 144–5, 168
weak version 142–3, 168
Porter, M.E. 42, 142, 144, 181, 215, 217, 218, 227, 245
Portney, P.R. 213, 215
Potoski, M. 100
Prakash, A. 100, 215
price competition 121
Prince, R. 182
probit model 45, 116–17
product design 24
product diversity, and environmental performance 91
product innovations 176, 184–5
public authorities, and environmental performance 91
public authority pressure
and environmental commitment 62
and environmental initiatives 38
likelihood of assigning responsible person 54
public policy and environmental performance 93–4
public procurement preference, as EMS-promoting incentive 124
quality management systems
and certification 54
and comprehensiveness of measures 55, 59
and environmental commitment 60–62
and likelihood of implementing EMS 39–40, 52
questionnaire 8

R&D
as measure of innovation 3, 145
and patents 147
see also environmental R&D
Index

regulation, and environmental innovation 181–2
regulatory pressure
 Brazil 94
 impact 243
regulatory relief 116
Rehfeld, K.-M. 179, 184
Rennings, K. 177, 179, 180, 181, 182, 183, 184, 185
response rates 5
Responsible Care Program 93
Riedinger, N. 93, 96
Rilstone, P. 22, 39, 93, 96
Rivera, J. 221, 243
Roberts, J. 37, 42
Robinson, S.N. 39
Rock, M. T. 94
Rondinelli, D.A. 128
Rosenberg, N. 179
Sadorsky, P. 19, 34, 38, 39, 40, 42, 43, 63, 128, 217
Scapecechi, P. 12, 22, 128
Scherer, F.M. 158, 180
Schumpeter, J.A. 180
Seith, R. 12
Seroa da Motta, R. 94, 96
Shadbegian, R.J. 93, 96
shareholder pressure 219–20; see also stock exchange listing (proxy for shareholder pressure)
Sharma, S. 34, 38, 63, 128
Shrivastava, P. 215
simultaneity of environmental management and performance decisions 104–9
Sinclair-Desgagné, B. 1, 14, 144
single-equation probit, models 116–17; see also probit model
Siniscalco, D. 95
SME (small and medium-sized enterprises)
 inclusion in database 5–6
 and tests of robustness 125–6
Snowden, R.R. 227
social desirability bias 22–3, 122–3
Society of German Engineers (VDI) 176
Solbach, D. 183
solid waste
 actions reported 20, 110
 and inspection frequency 114–15, 119–20
 and policy stringency 113–14, 123
sound absorbers 176
Speir, J. 128
Sprenger, R.-U. 178
stakeholder influence 12–13, 52
Stanwick, P.A. 213, 220
Stanwick, S.D. 213, 220
Starkey, R. 46
Stavins, R.N. 148, 213, 215
Stead, J. 52
Stead, W.E. 52
Stiglitz, J. 1
stock exchange listing (proxy for shareholder pressure)
 and comprehensiveness of environmental measures 55, 59
 and EMS certification 54
 and environmental accounting adoption 163
 and environmental commitment 62
 and environmental initiatives 38
 and environmental R&D budgets 158–9
 likelihood of assigning responsible person 54
Streitweiser, M.L. 91
subsidies
 influence in Hungary 9–10
 vs regulation 148
Superfund sites, and emissions 93
Survey of Research and Development 2002 (Japan) 151
Szulanski, G. 40, 41, 43
Tan, J. 51
target level choice, modelling framework 97–100
tax preferences, influence in Hungary 9–10
taxation
 China 94
 impact 93–4
 vs standards 148
 see also input taxes; pollution taxes
Index

technical assistance programmes
and comprehensiveness of
environmental measures 60
and EMS certification 54–5
and environmental commitment 65
and environmental initiatives 41
and environmental R&D budgets
157, 161
impact 62, 67
and likelihood of implementing
EMS 52
technological capabilities 179
technology-based standards
and CPP vs EOP 190
and environmental accounting
adoption 163
influence 113
negative influence 127, 162
technology choices 178–82
technology-push factors 179
Telle, K. 22, 26
Tibor, T. 46
Toxic Release Inventory (TRI) 219, 245
TQM, and ISO 9001 registration 39–40
tradeable permits 148
TRI (Toxic Release Inventory) 219, 245
Ulph, A.M. 181
USA
accident risk reduction reported 20
employee compensation 15
EMS certification 48, 62–3
EMS reported 112
environmental R&D 150
environmental training programmes
15
inspection frequency 114
instrument types 11, 12
management responsibility 15–16
NGOs' role 13
perceived environmental policy
regime stringency 8
persons with explicit responsibility
45
prevalence of EMS 14
regulatory relief 116
shift from EOP to CPP 178
van der Linde, C. 42, 142, 181, 215, 217, 218, 227, 245
VDI (Society of German Engineers) 176
Viscusi, W. Kip 39, 43, 93, 96
voluntary agreements
Hungary 113
influence 127–8
voluntary systems
interest in promoting 34
viewing as important
and certification 54
and comprehensiveness of
measures 55, 60
and environmental commitment 62
and likelihood of implementing
EMS 52
Vredenburg, H. 38, 39, 43, 62
Walz, R. 182
warning letters 94
wastewater 20, 231
wastewater treatment 176
Watkins, W.E. 14, 128
Welford, R. 227
Westley, F. 39, 43, 62
Wheeler, D. 12, 128, 228, 236
White, L.J. 182
Williamson, O.E. 180
written environmental policy 112, 190
Zackrisson, M. 128
Ziegler, A. 12
Zwick, T. 182, 183, 184