Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘3Ds’ of built environment</td>
<td>26, 73</td>
</tr>
<tr>
<td>‘4Cs’ of transportation capabilities</td>
<td>275</td>
</tr>
<tr>
<td>4th Dutch National Environmental Policy Plan (2001)</td>
<td>619–20</td>
</tr>
<tr>
<td>‘5Cs’ of transportation capabilities</td>
<td>275</td>
</tr>
<tr>
<td>‘5Ds’ of built environment</td>
<td>26, 73</td>
</tr>
<tr>
<td>‘6Cs’ of major projects</td>
<td>380</td>
</tr>
<tr>
<td>‘7Ds’ of built environment</td>
<td>73, 666–7</td>
</tr>
<tr>
<td>A1 (international expressway)</td>
<td>238–9</td>
</tr>
<tr>
<td>A15 project (Netherlands)</td>
<td>620–25, 627</td>
</tr>
<tr>
<td>Aalborg (Denmark)</td>
<td>486–7</td>
</tr>
<tr>
<td>Aarts, H.</td>
<td>493</td>
</tr>
<tr>
<td>access charging</td>
<td>278–81</td>
</tr>
<tr>
<td>see also road pricing</td>
<td></td>
</tr>
<tr>
<td>accessibility</td>
<td></td>
</tr>
<tr>
<td>and community design</td>
<td>209, 214–17</td>
</tr>
<tr>
<td>defining 230</td>
<td></td>
</tr>
<tr>
<td>disaggregated accessibility measures</td>
<td>459–60</td>
</tr>
<tr>
<td>and Dutch transport policy</td>
<td>460–65, 471</td>
</tr>
<tr>
<td>and ICTs 503</td>
<td></td>
</tr>
<tr>
<td>and income 414, 421–3, 426</td>
<td></td>
</tr>
<tr>
<td>and JLE impact study</td>
<td>321–2, 324</td>
</tr>
<tr>
<td>measurement of 421–3, 459–60</td>
<td></td>
</tr>
<tr>
<td>and neighbourhood type 179, 181–2, 184</td>
<td></td>
</tr>
<tr>
<td>and new household location</td>
<td>76, 79, 81–2, 83–4</td>
</tr>
<tr>
<td>and non-motorized transport 460, 466–7</td>
<td></td>
</tr>
<tr>
<td>social dimensions 432–5, 437–8, 460, 464</td>
<td></td>
</tr>
<tr>
<td>and transport performance indicators 460–65, 471</td>
<td></td>
</tr>
<tr>
<td>see also car ownership/availability</td>
<td></td>
</tr>
<tr>
<td>active transportation 210, 213, 216–18, 220–21, 224</td>
<td></td>
</tr>
<tr>
<td>active travel 32, 198–206, 531, 534, 581, 584</td>
<td></td>
</tr>
<tr>
<td>activity nodes (land use–transport parameter)</td>
<td>141</td>
</tr>
<tr>
<td>activity-based analysis 556–7, 558, 568–9</td>
<td></td>
</tr>
<tr>
<td>‘aerotropolis’ concept 371–2, 376</td>
<td></td>
</tr>
<tr>
<td>age effect (cohort analysis)</td>
<td>540</td>
</tr>
<tr>
<td>ageing populations</td>
<td></td>
</tr>
<tr>
<td>and car ownership/accessibility 539–40, 544–51, 553–4</td>
<td></td>
</tr>
<tr>
<td>cessation age for car–driving 539–42</td>
<td></td>
</tr>
<tr>
<td>characteristics of car owners 544–5</td>
<td></td>
</tr>
<tr>
<td>life changes post–car 551–3</td>
<td></td>
</tr>
<tr>
<td>agglomeration economies</td>
<td></td>
</tr>
<tr>
<td>and business location 334, 340, 344</td>
<td></td>
</tr>
<tr>
<td>and economic impact estimation 250, 252</td>
<td></td>
</tr>
<tr>
<td>and wider economic impacts of transport projects 263, 269, 677</td>
<td></td>
</tr>
<tr>
<td>aggregate analysis methods 84, 243, 251–3, 254</td>
<td></td>
</tr>
<tr>
<td>Alonso, W.</td>
<td>234</td>
</tr>
<tr>
<td>Amsterdam (Netherlands)</td>
<td>231</td>
</tr>
<tr>
<td>Anas, A.</td>
<td>91, 97</td>
</tr>
<tr>
<td>Annema, J. A.</td>
<td>396</td>
</tr>
<tr>
<td>Antwerp (Netherlands)</td>
<td>231</td>
</tr>
<tr>
<td>Appleyard, D.</td>
<td>442</td>
</tr>
<tr>
<td>‘appraisal optimism’</td>
<td>384</td>
</tr>
<tr>
<td>Aschauer, D.</td>
<td>251, 265</td>
</tr>
<tr>
<td>attitude-related self-selection 150–52, 168–77</td>
<td></td>
</tr>
<tr>
<td>attrition 438</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>and active travel modes</td>
<td>198</td>
</tr>
<tr>
<td>Brisbane oil vulnerability case study 572, 574–83</td>
<td></td>
</tr>
<tr>
<td>Sydney ‘familial automobility’ study 529–31</td>
<td></td>
</tr>
<tr>
<td>‘automobility’ 434, 438, 483, 526, 528, 529–36</td>
<td></td>
</tr>
<tr>
<td>‘automotive emotions’ 483</td>
<td></td>
</tr>
<tr>
<td>B2C (business to consumer) e-commerce 516, 518, 520</td>
<td></td>
</tr>
<tr>
<td>‘backcasting’ 661</td>
<td></td>
</tr>
<tr>
<td>Banister, D.</td>
<td>238, 295, 481, 587, 594</td>
</tr>
<tr>
<td>Barroso, J. M.</td>
<td>654, 656</td>
</tr>
<tr>
<td>BART (Bay Area Rapid Transit)</td>
<td>508</td>
</tr>
<tr>
<td>‘baseline conditions’ (JLE impact study) 321, 330</td>
<td></td>
</tr>
<tr>
<td>Batty, M.</td>
<td>459</td>
</tr>
<tr>
<td>Beijing (China)</td>
<td>684</td>
</tr>
<tr>
<td>benefit-cost analysis see cost-benefit analysis</td>
<td></td>
</tr>
<tr>
<td>betweenness centrality (SNAMUTS indicator)</td>
<td>141</td>
</tr>
<tr>
<td>Beveridge, W.</td>
<td>432</td>
</tr>
<tr>
<td>BHLS (buses with high level of service)</td>
<td></td>
</tr>
<tr>
<td>advanced technology utilization 358–9</td>
<td></td>
</tr>
<tr>
<td>Asian systems 355–6, 358</td>
<td></td>
</tr>
<tr>
<td>Australian and New Zealand systems 356–7</td>
<td></td>
</tr>
<tr>
<td>components of 348–9</td>
<td></td>
</tr>
<tr>
<td>defining 346</td>
<td></td>
</tr>
<tr>
<td>European systems 354–5</td>
<td></td>
</tr>
<tr>
<td>global status of 351–7</td>
<td></td>
</tr>
<tr>
<td>Latin American systems 352–4, 358</td>
<td></td>
</tr>
<tr>
<td>‘bicycle-friendly’ communities 204</td>
<td></td>
</tr>
<tr>
<td>Bikeability project (Denmark)</td>
<td>484–5</td>
</tr>
<tr>
<td>Birol, F.</td>
<td>572</td>
</tr>
</tbody>
</table>
Handbook on transport and development

‘black box’ character of models 254–5
Blackpool (UK) 311, 314
Bogota (Columbia) 296, 297, 346–7, 349, 353, 360
BRT (bus rapid transit) systems
 African systems 357
 Asian systems 355–6, 358
 Australian and New Zealand systems 356–7
 components of 348–9
 defining 346
 European systems 354–5
 global status of 351–7
 and land development 360
Latin American systems 352–4, 358
 and spatial implications of public transport investment 290, 291–2, 294, 296–7
US/Canadian systems 351–2, 353
Bruinsma, F. 238–9
Buchanan Report (1963) 465, 487–8
California (USA) 210–12
 see also Northern California
Canary Wharf (London) 238, 323, 330, 331
Cao, X. 32, 149, 152–3, 170, 173
‘car addicts’ 494, 665
carbon dioxide/greenhouse gas emissions
 and climate change policy 599, 603, 604–6, 607–8, 609, 610–11
 and energy consumption 37, 41–6, 49–52, 55, 57–8
 and European transport policy 648–9
 modal energy use comparisons 36, 37, 41–4
 and non-motorized transport use 49–50
 and population density 46, 48–50, 57
 and public transport 44–7, 55–7, 58
 reduction strategies 36, 37, 51–8
 see also climate change
carbon rationing 607–9, 611
car dependency
 and new household location 77–8, 80, 82–3, 84
 and oil price volatility 571, 572, 573, 574, 575, 578, 579, 581, 582, 584
car ownership/availability
 and ageing populations 539–40, 544–51, 553–4
 and income 414, 415, 416–17, 418–19, 424, 427–8
 and neighbourhood design 444, 453–4
‘car-fixation’ 491–9
‘car-free’ development 441
car-pooling 530, 534
carsharing schemes 534–5, 536, 604, 686
Cato Institute 368
CeMoRe (Centre for Mobilities Research) 482
central place theory 513
Cervero, R. 26, 27, 90, 91, 295, 360, 666–7
Chen, C. -L. 305, 306
Christaller, W. 513
‘city of short distances’ concept 447, 450–51
Clark, C. 229, 232–3, 290, 301, 679
climate change
 and C&C policies 607–10, 611
 and carbon rationing 607–9, 611
 and economic growth 602–3, 604
 and energy consumption 600–601, 603, 605–6, 608–9
 and greenhouse gas emissions 599, 603, 604–6, 607–8, 609, 610–11
 prospects for future generations 600, 605–6
 see also carbon dioxide emissions
C-MUS (Centre for Mobilities and Urban Studies) 482, 485
Cohen-Blankshtain, G. 291–2, 504
co-location 74, 78–80, 83, 84–5, 91–2, 93, 102, 252, 681
community design
 and accessibility 209, 214–17
 and active travel 198–206
 measuring 203–5
 and population density 201, 202, 203
 and street networks 210, 220, 224
 see also neighbourhood design
commuting
 house move choices influencing travel distance 67–8
 and leisure travel 587, 590, 593–4
 longer-distance commuting choices 66–9, 70, 78
 and neighbourhood design characteristics 181, 193–4
 and new household location 74, 76–8, 79–83
 and wider economic impacts of transport projects 260, 262, 263, 267
compact cities 73, 137, 438, 588–91, 594, 681
congestion
 and spatial structure 90–91, 93, 96–7, 101
 as transportation capability 275
 and urban freight distribution 273, 274, 278, 279
congestion charge (London) 54, 397, 398, 399, 407
‘control’ areas (JLE impact study) 320–21, 329
cost forecast inaccuracies 380, 381–4, 389–90
cost overruns 380–85, 387, 389, 391
cost-benefit analysis (CBA)
 and carbon dioxide emissions 52
 and Dutch road pricing study 394, 397–9, 402, 405, 407–8, 409–11
and economic impact estimation 243–4, 249, 253
and Jubilee Line Extension 318–19
and major projects 380, 390
and wider economic impacts of transport projects 259–60, 261, 266, 270
‘counter-urbanisation’ 60, 63, 69
Crossrail scheme (London) 269–70
cultural perspectives (on family/parenting) 528–33
cultures of mobilities
and ‘mobilities turn’ 479, 481–4, 485, 487, 488
‘staging mobilities’ 486–7
and transportation research 479, 480–81, 487–9
Curitiba BRT system (Brazil) 294, 296–7, 346–7, 351–4
Curtis, C. 140, 421
cycling see non-motorized transport
‘death of distance’ 503
densification 114, 133, 660, 670
‘desirable cities’ 683
discrimen factors’ 74
distance decay function 230
dormitory’ cities 337
Dowling, R. 532
Dutch National Transport Model System (LMS) 400, 405, 410, 460–62
Echenique, M. H. 115
econometric estimation models 252–3, 265, 296
economic growth
and accessibility 463, 465
and climate change 602–3, 604
and economic impact estimation 243, 251, 253
and European transport policy 652–3, 655, 656
and social policy 430–31, 434
and wider economic impacts of transport projects 260–61, 264–5, 268
economic growth theory 87
economic impact estimation
and ‘accessibility’ 247–9, 254
and agglomeration economies 250, 252
and aggregate analysis methods 251–3, 254
and benefit-cost analyses 243–4, 249, 253
cliometric methods 253, 254
and induced demand 245–6
see also wider economic impacts of transport projects

economies of scale 232, 236, 264, 268, 284, 514, 606, 683
eedge cities 98, 233, 371
emissions see carbon dioxide/greenhouse gas emissions
energy consumption
and carbon dioxide emissions 37, 41–6, 49–52, 55, 57–8
and climate change 600–601, 603, 605–6, 608–9
and leisure travel 587, 588–9, 591, 592–3, 594, 595–6
and new household location 73, 76, 77–85
and population density 665
and renewable energy 43, 365, 368, 375, 382, 601, 603, 608, 610, 683
Escobar, A. 431
European transport policy
and economic growth 652–3, 655, 656
evolution of common transport policy 645–7, 655
and sustainable mobility 647–50, 652, 653–4, 656
and Trans-European Transport Network initiative 250, 269, 650–52, 655, 656
Ewing, R. 22, 23, 25, 26, 27, 296, 666–7
Feitelson, E. 291–2
Flyvbjerg, B. 381–2, 383, 384, 389
‘forced car ownership’ 415, 424
Freiburg (Germany) 441, 444, 445, 446, 448–52, 453–6
fuel poverty 423, 424, 435
Garden City Movement (UK) 442–3
Gärling, T. 498
Geels, F. 502–3, 616, 617
gender
and ageing populations’ car ownership/accessibility 539, 540–45, 552–3, 554
and familial relationships 527–8, 529–31, 536
and travel-mode socialization 496–7, 499
Geurs, K. 230, 410, 459
GFC (global financial crisis) 571
GLA (Greater London reference area) 324–5, 327–8
Goetz, A. R. 480, 482
Good Roads Movement (USA) 209
Gordon, P. 25, 74, 79, 83, 90, 93
Gössling, S. 594
Graham, D. J. 252
Great Britain National Travel Survey 415–16
Greater London (UK) 104–16
see also London
‘Green Belt’ areas 61–2

Robin Hickman, Moshe Givoni, David Bonilla, and David Banister - 9780857937261
Downloaded from https://www.elgaronline.com/ at 11/02/2023 09:22:15AM via free access
Green Party (Germany) 631
Grieco, M. 481
GTC (generalized transport costs) 177
GWB (‘general well-being’) 431
Halden, D. 460, 472
Hall, P. 305, 306, 315
Hamer, R. 507
Hampstead Garden Suburb (London) 442–3
Handy, S. 149
‘Happiness Index’ 431–2
HATS (Household Activity-Travel Simulator) 671
hedonic price functions 247–8
Hensher, D. A. 274, 286
Hickman, R. 79
high mobility cities 680–81
Highway Capacity Manual (US) 460
Hjorthol, R. J. 519, 546
Holden, E. 589–90, 591, 592
‘home zones’ 444, 445, 448, 449
HS2 (proposed HST network) 315, 604–5
HSL-South project (Netherlands) 386–8, 389, 391
HSTs (high-speed trains)
and agglomeration economies 301, 304, 313
and climate change 604–5
and political leadership and governance
and induced demand 245–6
indirect effects 292, 369, 399, 400, 401–2, 405
industrial location theory 334, 367
‘innovers’ 75, 77–8, 84
Internet
and ‘change’ 678–9
‘knowledge economies’ 301, 306–7, 313, 315, 619, 678
and ‘knowledge workers’ 232, 370
‘knowledge economies’ 301, 306–7, 313, 315, 619, 678
‘knowledge workers’ 232, 370
Kasarda, J. D. 371, 376
Kassel RegioTram system (Germany)
Kemp, R. 616
Kempton, A. D. A. M. 569
Kenworthy, J. 37, 39, 42, 167, 588
Kenyon, S. 507
Kitamura, R. 591
Klöckner, C. 495, 496, 498
‘knowledge economies’ 301, 306–7, 313, 315, 619, 678
‘knowledge workers’ 232, 370

Robin Hickman, Moshe Givoni, David Bonilla, and David Banister - 9780857937261
Downloaded from https://www.elgaronline.com/ at 11/02/2023 09:22:15AM via free access
Kockelman, K. 26, 153
Krugman, P. 236, 367, 685
Kwan, M. P. 667
Kyoto Protocol 648, 681
Labour government (UK) 466
labour market (as driver of productivity) 263
land markets 88, 93, 100–101, 102, 247, 292, 334
Landis, J. 91
LATS (London Area Travel Survey, 2001) 104, 106–8, 111, 113
Laube, F. 37
Lefebvre, J. 444
leisure travel
and carbon dioxide emissions 587, 588, 594–5
and compact cities 588–91, 594
and energy consumption 587, 588–9, 591, 592–3, 594, 595–6
growth of 587
and planning policy 588–94, 595
Levinson, D. 239, 680
Linnerud, K. 589–90, 591
location theory 334, 367, 459, 680
London (UK)
congestion charge 54, 397, 398, 399, 407
Crossrail scheme 269–70
HST systems 305, 307, 312–13, 315
and Jubilee Line Extension see JLE
see also Greater London
London Olympics (2012) 323, 472
longer-distance commuting choices 66–9, 70–71, 78
longitudinal designs (methodological approach) 152, 153, 172, 173
Los Angeles (USA) 21, 22, 181, 232, 360
low mobility cities 680
LRT (light rail transit) systems 290–92, 293, 295–6, 297
Lucas, K. 420, 467, 468
Lyons, G. 483, 507
Maastricht Treaty (1992) 645, 647, 648, 650, 652
Mackie, P. 245, 397
macroeconomic simulation modelling methods 249–50
macro-level spatial impacts 292–4, 297
Madrid Metro Line 12 see Metrosur
Madrid Metropolitan Area (Spain) 335–7, 338
major projects
and accountability 388–91
characteristics of 380
and cost-benefit analysis 380, 390
and cost forecast inaccuracies 380, 381–4, 389–90
and cost overruns 380–85, 387, 389, 391
and decision-making 380, 381–3, 391
Manchester (UK) 296, 302, 307, 308, 312–14
Manchester International Airport (UK) 312–13
Marshall, S. 212–13
'matched pair' analysis 73, 75
Matthies, E. 495, 496, 498
mCenter (Center for Mobilities Research & Policy) 482
median running ways (BRT systems) 348–9
'megacities' 351, 358, 678, 679, 686
'mega-projects' 244
Mejia-Dorantes, L. 339
Metrobüs (Istanbul) 355
Metrobus (Mexico City) 349
Metrolink (Manchester, UK) 296
Metrosur (Madrid Metro Line)
and business location 335, 337, 339–44
Metz, D. 590
Meyer, A. 607
Millard-Ball, A. 534
Millennium Cities Database for Sustainable Transport 37–41, 44–50, 56
MLP (multi-level perspective/framework) 616, 617, 627
Mobilities (journal) 482
'mobilities design' 485, 488
'mobilities turn' 479, 481–4, 485, 487, 488
mobility difficulty 415–16, 417
mobility effects 516–20
modification effects 502, 506–7, 508, 512, 513, 516, 521
Mokhtarian, P. 149, 170, 173, 590, 594
mothering 529–31, 535
multinomial logit model approach 339–40, 342–3, 344
multitasking 507, 509
multivariate statistical analyses 121–2
MVV (Munich public transport management organization) 294
Næss, P. 484, 589, 590–91
NATA (‘new approach to appraisal’) 466–7
National Travel Survey (UK) 60–61
'need' for transport 422
'neighbourhood classification' 181–2
neighbourhood design
and car-oriented planning 441, 455
and car ownership 453–4
characteristics of 179–80, 181, 183–90, 193–5
Garden City Movement (UK) 442–3
and policy outcomes 452–5
and public transport 444, 445, 446, 447, 448, 449, 454, 456
and self-selection 441
traffic restraint policies 443–4, 445, 447–9, 456
see also community design
neighbourhood type
and design characteristics 179–80, 181, 183–90, 193–5
and non-motorized transport 149, 159
and residential location decisions 179, 180–82, 184, 190, 192–5
and self-selection 149–52, 154–63
network connectivity 141, 201
New Economic Geography 250, 367, 685
new household location
and accessibility 76, 79, 81–2, 83–4
and car dependency 77–8, 80, 82–3, 84
and commuting 74, 76–8, 79–83
‘inmovers’ 75, 77–8, 84
‘outmovers’ 75, 77–8, 84
and population density 79–80, 84
and public transport accessibility 81–2, 84
and self-selection 83
‘stayers’ 75, 77–83, 84
and sustainable development 73, 79, 85
see also residential location
‘New Urbanism’
and accessibility 111–12, 114–15
and commuting 106–11, 112, 113, 114–16
and public transport 104, 111–12, 113, 114–15
and sprawl 137, 138
Newman, P. 52, 167, 588
NGOs (non-governmental organizations) 591
NHOS (New Household Occupier Survey) 74–5, 76–83
NHTS (Nationwide Household Travel Survey) 98–101
non-motorized transport
and accessibility 460, 466–7
and active travel 32, 198–206, 531, 534, 581, 584
and neighbourhood design characteristics 179, 180, 193–4
and neighbourhood type 149, 159
and residential location case studies 120–21, 128, 129–30, 132
and street networks 217
Nordbakke, S. 546
NVV (North Hesse Transport Association) 631, 634, 637–8, 639–40, 643
obesity 220–21, 224
OECD (Organisation for Economic Co-operation and Development) 137
oil prices
Brisbane oil vulnerability case study 572, 574–83
and car-dependency 571, 572, 573, 574, 575, 578, 579, 581, 582, 584
and public transport services 574–5, 578, 579, 581, 582, 584
VAMPIRE Index 576, 578–9, 580, 581, 582–3
VIPER Index 576–8, 581, 582–3
‘oil shock’ (1970s) 136
OLS (ordinary least square) regression model 96, 97–8
Olympic Delivery Authority (UK) 472
optimism bias 384
‘outmovers’ 75, 77–8, 84
parenting 526, 528–34, 535, 536
Paris (France) 303–4, 306
PCA (Personal Carbon Allowance) 608, 611
‘peak’ in global oil production 572
pedestrianization 296, 298, 443, 454, 682
per passenger kilometre (energy use measure) 37, 41–4, 55, 368, 610
per vehicle kilometre (energy use measure) 41, 42, 284
Perry, C. 443, 444
planned behaviour theory 491–2
planning policy
and accessibility 60, 67–8, 70, 459, 460–72
and car dependency 59, 66
and climate change 601–10
and oil vulnerability 579, 581–4
and public transport–oriented development 136, 137–40, 142–3, 144–5
and wider economic impacts of transport projects 259, 260, 268–70
see also European transport policy; road pricing
point pattern analysis 339
population decentralization 96, 97–8
population density
and BRT systems 296–7
and carbon dioxide emissions 46, 48–50, 57
and community design 201, 202, 203
and commuting 79–80, 84
and low mobility cities 680
and neighbourhood type 185–6, 188
and new household location 79–80, 84
and spatial structure 96, 97
and sprawl measurement 21, 28–9
population growth
and hub airports 371, 375
Index

and Jubilee Line Extension impacts 323–4
and oil vulnerability 574
and planning policy 59
and PTOD 137
and spatial structure 91, 96, 101
and street networks 213–14
and sustainable development 59, 61
Port Sunlight (UK) 443
Portland (USA) 21, 22, 23, 182, 293
‘potential accessibility’ 143, 465, 466, 472
PPPs (public–private partnerships) 277, 386, 388
‘prehension’ 664, 665–6, 667–70
Preston, J. 245
principal component analysis 22, 96–7, 184, 186
principal–agent relationship 384
private ownership 384–6, 388–91
privatization 303, 309, 311, 363, 368, 381, 388
ProRail (Dutch infrastructure management company) 386
Prud’homme, R. 397
PSC (public sector comparator) 387–8
PSM (propensity score matching) 152, 153, 156, 158–63, 172, 173
PTA (Public Transport Authority) 143–4
PTOD (public transport-oriented development)
accessibility tools 139–44, 145
and land use–transport integration 138–9, 140–45
and planning policy 136, 137–40, 142–3, 144–5
and polycentric development 136, 137–8, 144
and public transport efficiency 136–7
and sprawl 137, 138
and transport corridors 136–7, 139, 142
and urban structure 136–7
see also TOD
public ownership of transport systems 384–6, 388–91
public transport
and accessibility 76, 79, 81–4, 111–12, 115, 122, 132, 136, 137–45, 460, 462, 465, 467, 469–71
and carbon dioxide emissions 44–7, 55–7, 58
and ‘familial automobility’ 528, 529–30
and impact of oil price volatility 574–5, 578, 579, 581, 582, 584
and leisure travel 587, 589, 591, 592, 594, 595–6
and low mobility cities 680
and neighbourhood design 444, 445, 446, 447, 448, 449, 454, 456
and new household location 81–2, 84
‘New Urbanism’ case study 104, 111–12, 113, 114–15
public transport-orientated development
see PTOD
and self-selection 174
and sustainable development 686
and transport corridors 60, 70, 136–7, 139, 142
and ‘transport poverty’ 414, 419, 422–3, 424, 425, 427
Radburn (New Jersey) 443
rectilinear street network patterns 208–9
‘Red Flag’ Act 441
‘reference’ areas (JLE impact study) 321, 329
reflexivity 616, 620
regression analysis 24, 91, 96–9, 131–2, 160, 163, 167, 190, 193, 420, 463–4, 496, 589–90, 666
REMI (Regional Economic Models, Inc.) 250
renewable energy 43, 365, 368, 375, 582, 601, 603, 608, 610, 683
resident typology 75, 76–7
residential preferences 154, 157–60, 162
Richardson, H. 25, 74, 79, 83, 90
Rieselfeld (Germany) 445, 446, 448–50, 451–2, 453, 454–5, 456
Rietveld, P. 238–9, 371
Rip, A. 616
road pricing (Netherlands study)
and carbon dioxide emissions 402, 408–9
cost-benefit analysis 394, 397–9, 402, 405, 407–8, 409–11
cost-effectiveness of schemes 394, 398, 399, 400, 405–11
road safety 157–60, 175–6, 210, 213, 217, 220, 224
Roadmap to a Single European Transport Area
(White Paper) 649
Rostow, W. 260, 430
Rotem-Mindali, O. 520
Rotterdam (Netherlands) 620–25, 627
RPAA (Regional Planning Association of America) 443
SACTRA (Standing Advisory Committee on Trunk Road Assessment) 268, 270
‘Safe Routes to School’ programmes 534
Salomon, I. 506, 593
San Diego (USA) 295
San Francisco (USA) 198, 442, 508, 591
SCGE (spatial computable general equilibrium) models 250, 251
‘school runs’ 531–2, 534, 535–5
Schwanen, T. 535
Scottish Transport Appraisal Guidance (2003) 467
self-esteem (well–being dimension) 546, 548
self-selection 4
and accessibility 174, 177
and active travel modes 203
common methodological approaches 152–3, 170, 171–2, 173
and compact cities 589, 590–91
defining 167–8, 176
influence on travel behaviour 30
and neighbourhood design 179, 180, 193–4, 441
SEU (Social Exclusion Unit) 415, 467
Sheller, M. 482, 483
Sipe, N. 576
SNAMUTS (Spatial Network Analysis for Multimodal Urban Transport Systems) tool 140–45
SNCF (French train operator) 306, 311
Social Democrat Party (Germany) 631
‘soft measures’ 206
Spatial Gini index 97
spatial implications of public transport investment 290–98
spatial interaction theory 513
spatial structure
and city-size 87–9
and compact development 87
and congestion 90–91, 93, 96–7, 101
dispersed forms 90, 91, 92–8
and population density 96, 97
and regression analysis 91, 96–9
and self-selection 90
spatial implications of public transport investment 290–98
and sprawl 87, 90, 91, 93
spawl
and accessibility 20–21, 22, 25–30, 31
consequences of 149
defining 21–2
development patterns 20–21
health/well-being costs 25–6
measuring 21–5
and ‘New Urbanism’ 137, 138
’staging mobilities’ 486–7
‘stayers’ 75, 77–83, 84
Stead, D. 594
Stein, C. 443, 444
Stokes, G. 420
Storper, M. 685
’strict car suburbs’ 291
street configuration 211, 213, 217–19
street connectivity
and active travel 201
and ‘cities for people’ 682
and ‘D’ variables 27, 29–30
and street networks measures 209, 211–12, 213, 215–20
street networks
and active transportation 217–20
evolution of 208–10, 211, 213–14
and ‘New Urbanism’ 222
and non-motorized transport 217
and road safety 217, 220
street network density 209, 211–12, 213, 215–17
street network measures 211–12, 213
and vehicles miles travelled 213–16
Street Patterns (book) 212
streets factor (sprawl measurement) 22, 23–5
structural equations models (methodological approach) 152, 153, 172, 173
Sunyside (New York) 443
sustainability/sustainable development
and accessibility 465, 466, 471, 681
and ‘aerotropolis’ concept 372
defining sustainable development 686
and European transport policy 647–50, 652, 653–4, 656
and neighbourhood design 441, 444, 445, 446, 448, 454, 456
and new household location 73, 79, 85
and planning policy 59, 60, 61–2, 69–71
and public transport 686
and temporality 660
and transition management 614–16, 617–20, 622–7
and ‘transport poverty’ 427–8
Sustainable Development Commission (UK) 427
Sustainable Development Strategy (UK) 60
telecommuting 503, 504–5, 507, 593–4
‘teleleisure’ 593
temporality 660–62, 663, 666, 671–2
TEN-T (Trans-European Transport Network initiative 250, 269, 650–52, 655, 656
TFL (Transport for London) 319, 399
TGV-Nord (French HST rail system) 302, 303, 306, 307, 310–11
‘The Northern Way’ 313
‘The Second Railway Age’ 301
Theil index 97
Thrift, N. 483
Timmermans, H. J. P. 569
Titheridge, H. 589
TM-cycle (transition management cyclical process model) 618–19
‘to be’ (well-being dimension) 549
‘to have’ (well-being dimension) 549
‘to love’ (well-being dimension) 549
TOD (transit oriented development) and BRT systems 360
and carbon dioxide emissions 56
and spatial implications of public transport investment 293
and spatial structure 90
and sustainable development 683
see also PTOD
‘Too Little Mobility’ (social policy discourse) 433–4, 438
‘Too Much Mobility’ (social policy discourse) 434–5, 438
transition management
and accessibility 614, 615, 620, 622–4, 626
and sustainable development 614–16, 617–20, 622–7
and transition theory 616–17
transport appraisal 465, 466–7, 472, 483
transport corridors 60, 70, 136–7, 139, 142
transport costs
and accessibility 230, 235, 239, 461, 462, 464, 465
and agglomeration economies 233, 234–7, 250
definition of 229
and self-selection 166
and spatial development 230
and spatial structure 88, 90
transport geography 434, 480–81
transport performance indicators 460–65, 471
‘transport poverty’ 414–16, 421, 423–5, 426–8
‘transport rationales’ 484
Transport Studies Unit (University of Oxford) 4
‘transport wealth’ 425–6
Transport White Papers (EU) 653–4
transportation capabilities 275
Transportation Research Board (USA) 115
‘transport-proofed’ social policies 438
Transumo (Transition to Sustainable Mobility) programmes 620–25, 627
travel distance
and accessibility 421–2, 462–3
and ageing populations 559–62, 569
and house move choices 67–8
and income 417–18, 420
and increased transport speeds 229
and new household location 73, 78, 80–82, 84
and residential design 444, 450
and residential location 127, 128, 131
socio-economic factors influencing 66–7
and telecommuting 505
‘travel kurtosis effect’ 76, 84
travel time
and accessibility 461–4, 465, 466, 469–70, 471–2
and BRT systems 350, 358, 360
and community design 200
and commuting 90, 92–9, 100, 101
and ‘cultures of mobilities’ 481, 483
and gender 496
and hub airports 366
and ICTs 507
and parenting 529, 531
and PTOD 137, 141
and self-selection effects 166, 168, 175
and spatial structure 90, 92–101
and sprawl 24–5, 27
and wider economic impacts of transport projects 262–3
travel-mode habits 491–9
TravelSmart initiatives (Australia) 534
Tripp, A. 443
‘traps per year’ measures 417–18
Tübingen (Germany) 441, 444–450, 451–2, 453–4, 456
‘two-way road’ argument 264
UITP (International Union of Public Transport) 37
UK (United Kingdom)
accessibility in transport policy 465–71, 472
Garden City Movement 442–3
Unwin, R. 442, 443, 444
‘urban concentration’ policy 61, 65–6
urban containment 60, 104, 133, 681
urban freight distribution
and access charging 278–81
business environment trends 281–6
and congestion 273, 274, 278, 279
consolidation in distribution 282–5, 287
and environmental concerns 273, 278
JIT and QR strategies 285–6
and productivity 273
and road infrastructure 273
‘Urban Renaissance’ 104, 116
Urry, J. 481–2, 484
USA (United States of America)
and active travel modes 198, 202, 203
carbon dioxide emissions data 39, 44, 46, 57
and carsharing schemes 534
and city-size rankings 88–9
and e-retailing 514–15
and high mobility cities 680
and modal energy use comparisons 43–4
and obesity epidemic 220–21
and public transport-oriented development 137–8
and residential location decisions 180, 181–2
and spatial implications of public transport investment 290–91, 293, 295–6
and spatial structure studies 90–101
and sprawl measurement 21–2
and sprawl pattern definitions 20–21
and traffic restraint policies 443
VAMPIRE (Vulnerability Assessment for Mortgage Petroleum and Inflation Risk and Expenses) 576, 578–9, 580, 581, 582–3
van Wee, B. 168, 174, 176, 177, 230, 410, 459
Vauban (Germany) 445, 446, 448, 449, 450, 451–2, 453, 454–5, 456
Vickerman, R. 265
VIPER (Vulnerability Index for Petroleum Expenses and Risks) 576–8, 581, 582–3
VMT/VMD (vehicle miles travelled/driven) 59–60
ICT impacts on 504
and induced demand 245
and neighbourhood type 154, 159–60
and new household location 83
and population growth 213–14
and spatial structure 90, 92
and sprawl 23–5, 27–30, 31
and street networks 213–16
VOT (value of time) 397, 399, 407
VT (Versement Transport) tax 312
VVD-CDA coalition government (Netherlands) 411
walkability index 204
‘walkable’ neighbourhoods 149, 179, 180, 204
walking see non-motorized transport
‘wasteful commuting’ 234
WBCSD (World Business Council for Sustainable Development) 51, 52
WCED (World Commission for Environment and Development) 615
Webber, M. 138, 444
Wegener, M. 296
welfare economics (in transport network evolution) 239–40, 240–41
well-being 25–6, 431, 545–51, 552, 553–4
Wheaton index 97
Whitehead, A. N. 661–72
WHO (World Health Organization) 198, 203
wider economic impacts of transport projects and accessibility 260, 269, 273
and agglomeration economies 263, 269
and cost-benefit analysis 259–60, 261, 266, 270
direct impact 262, 270
and economic growth 260–61, 264–5, 268
empirical evidence 265–8
and ex-post monitoring 267–8
and planning policy 259, 260, 268–70
theoretical evidence 260–65
and transport project appraisal 268–70