Index

accessibility measurement 370–72
concept of 370
cumulative opportunities approach 369–70
dynamic transport model 372
gravity based 369
individual–specific 371–2
proximity based 369
utility-based approach 370

ACCRA
Cost of Living indices 15

Akiakere
Cost of Living indices 15

Akaike information criteria (AIC) 314, 392–3

allocation
Pareto efficient 29
random 29
alternative specific constraints (ASC) 208
altruism 9–10, 36, 40
genetic 35–6
analysis of variance (ANOVA) 157
appraisal
Kaldor–Hicks compensation criterion
Pareto criterion 604–5
Scitovsky criterion 604
Archimedian copula 261–2
Ariely, Dan 2
arithmetic intelligence (AI)
potential use in DCM theory
asymmetric value function 284
asymptomatic variance-covariance (AVC)
matrix 157, 161–2, 164–5, 167, 170
in DCM 168, 171
attribute non-attendance (AN-A) 271–2, 274–6, 278–81, 323, 664
calculation of VTTS in 277
definitions of 272
developments 280
self-reported 274
use in WTP estimation 665
attribute processing 269–70, 272–5, 279–80, 284–6
induced 272
heterogeneity in 272
rules of 271–2, 275
strategies (APS) 269, 274–5, 323–4, 326
attribute thresholds 281–2, 284–5
Auspitz, Rudolph 10
Australia 277, 355, 675
automatic number plate recognition (ANPR)
137–8, 144–5
concept of 139
average partial effects (APE) 344–5
balanced incomplete block designs (BIBDs)
196
concept of 182–3
Bayesian estimation/inference 457, 488–93, 657
hierarchical (HB) 458–61, 482–4, 486–8, 491, 500, 507–11
regression models 459, 478
of RUM 493
use in implementation of MCMC 488
use of grid methods in 462
use of HPDI in 461
Bayesian information criterion (BIC) 277, 314, 317, 489
behavioural economics 51, 291
anomalies in 620
behavioural realism 401–2
Bernoulli random variable 336
best-worse choice (BWCHOICE) 209
Best-Worst Scaling (BWS) 180–81, 183, 186–8, 195–6, 681
concept of 178
development of 178–81, 184
maxdiff model 180, 188–92, 194–5
MNL model 187–9, 191–2
Multi-profile Case (Case 3) 184–6, 188–90, 192–3
Object Case (Case 1) 181–2, 186–90, 192, 194–5
Profile Case (Case 2) 183–4, 186–9, 192–3
use in health economies 681–3
Bentham, Jeremy 10

Introduction to the Principles of Morals and Legislation (1789) 8–9
view of utility 24
bidding game (BGAME) 207–8, 210
binary choice data 265
cross-validation of 262–4
Bohr, Niels
elegant correspondence principle of 622

Canada
Environmental Resource Inventory (EVRI) 202–3
Handbook of choice modelling

candidate welfare theory 620–21
choice alternative 565–6
choice behaviour 1, 51, 56–7, 268–70, 629–31, 654, 670
goal pursuit 654–5
independence 54
regularity 55
stationarity 55–6
transitivity 52
choice context 101, 108–9, 113–14, 120–21, 124
bioecological model 102–11
global influence 107
historical time and place 102–4, 107–8, 111–12
human agency 103
human development 104–7
linked lives 103, 107
person-process-context-time (PPCT) model 105–9, 124
timing of lives 103–4
choice experiments (CE) 661
WTP estimates 670
choice modelling (CM) 1–2, 67–8, 73, 117–18, 206, 269, 413–14, 423, 499, 618, 641, 643, 649, 658, 661, 667–71
big data 656–8
decision rules 663–5
development of 498
heterogeneity in 662
incentive compatibility 666–7
multiple goal pursuit 654–5
multi-stage 649–50, 653–4, 657–8
non-compensatory 656
nonparametric 656–8
spatial choice 669–70
use of latent class models in 314
Clark–Groves mechanism 28
Cobb–Douglas demands 14
Cobb–Douglas price index 15
cognitive psychology 26–7, 29
commodities 18
hedonic 22
common consequence effect (CCE) 78, 84
common ratio effect (CRE) 76–80, 82, 84
classical 94
patterns of 93
compensating variation (CV) 603
composite marginal likelihood 576
compromise effect 54
computable general equilibrium (CGE) 607
conjoint choice experiments
hypothetical bias in 241–3
Constant Elasticity of Substitution (CES) 15, 617
consumer behaviour 1, 23–5, 34, 478, 519, 649, 651, 653–4, 694
money-metric utility view of 13
neoclassical modelling of 24
non-positivist analysis 101
studies of 7, 22
use of RUM in modelling 450
consumer demand 1
consumer measurement
brain activity 36–40
consumer theory 10–11, 24, 212
economic 40
neoclassical 9–10, 18, 26, 207–8
consumption 25
contingent valuation (CV) 202–3, 205–6, 211–12, 217, 221, 224–5, 611, 661
application of 238
bequest value 218
criticisms of 222–3, 225, 666
development of 204, 218–19, 228
existence value 215–16
relationship with DCE 206–7
relationship with elicitation formats 205, 207, 209–10
random utility framework 213–14
stewardship value 215–16
studies/surveys 204–5, 213, 217–20, 223–4, 227–8, 249
use in measurement of WTA/WTP 220–21, 225–6
use value 215
continuous utility index 11
conventional demand theory 33
convergence 583
q-linear 581, 585–6
q-quadratic 581–2
q-superlinear 581
speed of 581
cost–benefit analysis (CBA) 601, 603, 605–7, 676, 684
cost–utility analysis (CUA) 676, 684
Court, Andrew 21
covariance matrix 437, 486, 523–4, 533–4, 536–7, 541–3
Cholesky factorization of 523, 525, 527, 536, 539–40
variance–covariance (VC) matrix 159–60, 384–5, 442–3
cultural constructs 116, 123
cumulative density function (CDF) 257, 260, 263, 336–7, 395, 487, 608, 613
approximation of 258
continuous 261
derivatives of 440
inverse/inverted 470, 483, 486
joint 440
multivariate 261
multivariate normal (MVNCDF) 442–4
of expenditure function 613
use in RUM 608
cumulative prospect theory (CPT) 81
data collection 131–2
activity purpose imputation 142
cleaning and smoothing 140–41
ground truth 132–3
processing 140
response burden 135
sources 138–9
spatial matching 142
data-generating process (DGP) 577, 590
concept of 565
Dawkins, William 35
Deaton, Angus
Almost Ideal Demand System 15
decision by sampling 65–6
decision-making 28, 67, 364, 384
collective model 366–7
dynamic transport model 372–3
discrete choice 363
household model of 365–9
individual 364–5
unitart model 365–6
decision neuroscience 66
decision rules
compensatory 663
non-compensatory 663
deflation 13
demand analysis
neoclassical 13
demand function 14, 17
Gorman polar form 14
Hicksian 11
market 11
demand systems
derivation of 11
neoclassical 15
discrete choice 22–3, 290, 539
binomial 257
decision-making 363
estimation of 568–9
m-estimators 569
method of sieves 258–61
mixtures of distributions approach
(MOD) 260–61
hedonic 23
influence of random utility theory in
384
multinomial 257
use of MLE in 570
discrete choice experiment (DCE) 179–80,
182–3, 186, 194–5, 202–3, 205–6, 211, 215,
225, 228–9, 259, 397, 434, 443, 461, 675,
680–81, 683
additional complexity 297–8
attribute-based model 212
elicitation 207
multi-attribute 666
questions
binary choice (BC-SEQ) 209, 211
multinomial choice (MC-SEQ) 209, 211
relationship with CV 206–7
SP 679
traditional 181
discrete choice models (DCM) 23, 27, 156–7,
160, 168, 171, 179–80, 259, 268, 271, 290,
294, 298, 340, 350, 368–9, 374, 383, 397,
409, 427, 434, 437, 498, 519–20, 527–8,
547–8, 550–51, 565, 570, 574, 589, 601,
611–12, 638, 675, 688–9, 691–2, 694
AVC matrix in 168, 171
binomial 257
classical 690
criticisms of 394, 401
data use in 693
decision rules in 295, 297
estimation 568–9, 571
identification problems in 540–41
limitations of 689
MLE of 570, 588, 590, 596
multinomial 257
of labour supply 363
potential use of AI in 691
single 114, 443–4
structure of 530, 539–40
error structure 543
use in health economies 675–9, 681–3
use of HCM in extension of 386, 410
use of RUT in 384
discrete-continuous choice models 3–4
mixed 608
multiple (MDC) 427–30, 444, 448–9, 451
KKT-based 430, 444, 446
random utility maximization (RUM) 428, 451
KKT-based 447–8
single (SDC) 427–9
Diewert, Erwin 15
Dupuit, Jules 9, 16
observations of changes in consumer well-
being 18
dynamic psychological models 59–60, 65
‘horse race’ choices model 60
independent Poisson 60
linear ballistic accumulator (LBA) type 60, 67
sequential sampling choice model 61–3, 65–6
associative accumulation model (AAM) 64–5, 67
attention modulated drift-diffusion model (AM-DDM) 64–5
decision field theory (DFT) 63–4, 67
leaky competing accumulator (LCA) model 63–4, 67
dynamic stochastic programming 24–5
economic behaviour 36, 40
econometric demand analysis 14–15
economic demand analysis 13
Edgeworth, Francis 8–9, 24
elicitation formats 3, 28, 73, 102, 110, 117, 203
dichotomous choice (DC) 239–41, 246
discrete choice 205
double-bounded binary choice (DBBC) 208, 213
relationship with CV 205, 207, 209–10
single binary choice (SBC) 208, 210, 228
single multinomial choice (SMC) 208–9, 211
stated preference 209–10
elimination by aspects (EBA) theory 292
concept of 58
endogeneity 114, 171, 280, 449, 628, 663
in pricing 668
equivalent variation (EV) 603
error theory 49
European Union (EU) 103
expected monetary values (EVs) 78
expected utility theory (EUT) 73, 76–8, 80–81, 89, 93–4, 249, 418–19
alternatives to 90
betweenness property of 76
concept of 75
departures from 84
use in risk management 415–16, 423
use on lottery pair response rates 249
experimental design (ED) 156, 661–2
concept of 157
extreme value (EV) 442
generalized (GEV) 171, 325, 370, 442, 439, 519, 522–3, 550–51
mixed (MMDCEV) 441
multiple discrete-continuous extreme value (MDCEV) model 114, 439, 441–2, 444, 450, 635
multiple discrete-continuous generalized extreme-value (MDCGEV) model 439–40
multiple discrete-continuous nested extreme-value (MDCNEV) model 439–40
multivariate (MEV) 610–11, 613–16
logsum issued in 615
random variable 523
extreme value density function 438
fairness 40
final prices 17
Fisher, Irving 10, 13
forecasting 627–8, 635–6, 682
aggregate 632–3
disaggregate 632–3
discriminant analysis 628
errors 631–3, 642–3
models
error 642
inputs 637–9
temporal transfer 637–8
of discrete-continuous choice 634–5
pivot point 633–4
population 640–41
iterative proportional fitting (IPF) 640–41
quadratic minimisation (QUAD) 640
France
Paris 13, 371
Frisch, Ragnar 13
Gaussian copula 262
concept of 261
use with method of sieves 261–2
generalized cost function 373
Generalized Leontief cost function 15
generalized method of moments (GMM) 353
Global Positioning System (GPS) 122–3, 131, 133, 137–9, 144
diaries 143
measurement 140
global system for mobile communications (GSM) 131, 133, 137–40, 143–4
measurements 140
goods 11, 447
durable 10
inside 434–6
market 27
non-durable 10
outside 434–5
Gorman, Terence 14–15
Gossen, Hermann 9
Greece 349
Hägerstrand, T.
time-space prism (TSP) concept 372
Hall, Robert 15
Hamilton, William 35
health economies 678, 683–4
data use in 675, 679–80, 683
quality adjusted life year (QALY) 676–7, 684
use of BWS in 681–3
use of DCEs in 675–9, 681–3
hedonic taste 23
hedonic products
market equilibrium 22
of household production 21–2
Hessian 341, 568, 574–5, 580, 584–6, 588, 591–2
analytic 582
approximation of 579, 583, 587–90
BHHH 590
empirical 577–8
finite difference 593
ill-conditioned 548
matrix 547, 573–4
singular 549
heterogeneity 3, 15, 20, 25, 116, 270, 272, 278, 280, 311–12, 317, 326, 346–9, 354, 393, 458
cross-individual 20
decision rule 324–6
deterministic 313, 325
in CM 662
in HCM 394–5
in induced attribute processing 272
in IP strategies 273
intra-individual 20
in VTTS 394–5
modelling parameter 350–51
multivariate regression 478–9
preference 18–19, 270, 277, 311
random 316, 318
taste 20, 311–12, 314, 316, 318, 394, 662
unobserved 409
within-class 278–9
heteroscedasticity 282, 326
Hicks, John 9–10, 16, 28, 219
Hicks–Samuelson formulation 10
highest posterior density intervals (HPDI) use in Bayesian estimation/inference 461
homogeneity
intra-individual 315
Houthakker indirect addilog system 15
human capital 416
aims of 386
concept of 386–7, 521
conditional choice probability in 387
development of 383, 410
efficiency 397
error structure 543–5
estimation of 392–3, 399, 406–7
heterogeneity in 394–5
identification of 527–8, 530–32, 534–5, 539, 548, 551
confirmatory factor analytic model 532–4
structural equation models 535–6
in logit models 519–20
kernel of 521–2
latent variables 388–91, 400–401, 404–5, 408–9, 521, 524–5, 528
multiple indicator response (MIMIC) model 526
normalization of 391–2
production of 393
use in extension of DCM 386, 410
hyperbolic discounting 32
hypothetical bias 239–42, 642
advisory referenda and realism 248
in conjoint choice experiments 241–3
in MPL 241
mitigation of 244
instrument calibration 244
statistical calibration 244–8
salient rewards 248–9
hypothetical choice 236–9, 242, 247–50
DC elicitation in 239–40
incentive compatibility 239
in choice behaviour 237–8
independent of irrelevant alternatives (IIA) condition 187, 211, 320
in MNL model 652
restrictive property 214
indirect utility function 11–12
individual level models (ILMs)
estimation of 498–500
use of Newton–Raphson algorithm in 501
information communications technology (ICT) 113, 115
impact on travel behaviour 691
information processing (IP) 272, 280
strategies (IPS) 273, 323
intemporal choice 39
International Choice Modelling Conference 2
Jorgenson, Dale 15
judgmental noise
concept of 88
Kahneman, Daniel 2, 29

kernel regression
concept of 263–4

labor force participation 101
labor relations 101
labor supply 367–8, 374
collective model of 367
Lagrangian function 435–6
Lancaster, Kevin 21
 latency 116
 constructs 117
 response 665

latent class models 316–17, 323–5, 350–51, 388
 class allocation 315, 317–18, 323–4
 concept of 314–15
 contrasts in 316
 correlation between coefficients 318–19
 disaggregate elasticities 319–21
 posterior analysis 317–18
 use in CM 314

latent regression 336, 338
 model 337, 339–40, 349
 variables of 341

Lau, Larry 15
Lewbel, Arthur 15
Lieben, Richard 10

likelihood function 312, 439
linear constraints 11, 18
linear expenditure system (LES) 430, 432
linear regression model 159, 498
homoscedastic 160
log-likelihood 349–52, 398, 504
 function 502
 negative 596
 unconditional 350
logistic regression models 474–5
logit models 168, 173, 285, 346, 351, 405, 636
 binary 353
 conditional 194
 ML estimates of 195
 continuous mixed 311, 319–22
 generalized rank ordered (GROL) 188
 hybrid choice model (HCM) 519–20
 latent class 311, 321
 mixed multinomial (LC_MMNL) 278
 mass point 313–14
 mixed 259–60, 278, 611–12, 636, 662
 HB 509, 512–13
 modified 271
 multinomial (MNL) 161–2, 165–8, 170–73,
 186–9, 191, 196, 214, 277, 282, 312–13,
 315–16, 320–21, 370–71, 439, 520, 549,
 610, 612, 633, 662
 constrained 653
 generalized (GMNL) 188, 662
 heteroscedastic Gumbel scale (HG-SMNL) 283
 IIA property of 652
 mixed (MMNL) 164, 170–72
 sequential best-worst (SBWMNL) 682
 use in BWS 187–9, 191–2
 nested (NL) 170–71, 371
 non-linear 168
 regression 195

lotteries 30–32, 73, 84, 86–9, 93, 418–19, 422–3
 alternative 31, 86
 between-lottery interactions 79–83, 91, 93–4
 choice in 29–30
 hypotenuse 87–8
 non-degenerate 92
 options in choice set 91–2
 payoffs 89–91
 reduction of compound (ROCL) 420
 risky 76, 84, 249, 413, 418
 safe 413
 state 354
 two-outcome 92
 within-lottery interactions 77–8, 85, 87, 91, 93

Louviere, Jordan
 role in development of BWS 178–81, 184

majority of confirming dimensions (MCD) 283–4
market behaviour
 revealed 26
 role of decision utility in 23
market demand 19–20
market demand function 11
marketing 649–51, 658, 689
 choice set formation 651–3, 667
 decision strategy selection 653–4
 stock-keeping units (SKUs) 650–51
 use of big data in 656–7
Markov process 58
Marschak–Machina (M–M) triangle 76, 81–3, 85–6, 90–91
Marshall, Alfred 9, 16
Marshallian consumer surplus 614
 as welfare measure 619
maximum likelihood (ML) 192, 194–5, 259, 265, 312, 314, 574, 577, 631, 633
 estimates of conditional logit 195
 estimation (MLE) 340–41, 352, 354, 476–7,
 566, 569–70, 572–6, 588, 590
 quasi- (QMLE) 576–7, 588
 use in BHHH 590
 use in discrete choice models 570
maximum simulated log-likelihood (MSL) 313, 392
McKenzie, Lionel 11
mean square error (MSE) weight 508–10
aggregate 511, 513
for HB 507
for WLS 507, 509
microeconomic theory 29, 519, 688–9
neoclassical 602–3, 619
microsimulation models 122, 325
Monte Carlo (MC) 352–3, 636
approximation 466
integration 392
Markov chain (MCMC) 459, 465–6, 472, 475–6, 483, 488, 491
Bayesian hypothesis testing 488–91, 493
Gelfand and Dey method 490
Gibbs sampling 466–70, 473
HB logit model 487
HB probit model 484–6, 492
HB regression 480–82, 484
Metropolis–Hastings (MH) sampling 466, 473–5, 477–80
ordinal probit model 483–4
Savage–Dickey density ratio 490
simulations 174, 462, 464, 506–7, 548
Muelbauer, John
Almost Ideal Demand System 15
 multicollinearity 159
concept of 546–7
multiple price list (MPL) 241
hypothesised bias in 241
dmultivariate analysis of variance (MANOVA) 158
multivariate normal (MVN) 443
distributed stochasticity 448
cumulative distribution function (MVNCDF) 442–4
ersors 442, 444
Muth, John 21
National Oceanographic and Atmospheric Administration (NOAA) 238
National Survey of Families and Households (NSFH) 373
Netflix 333
neurology 37–9
substance addiction observation 39
Newton–Raphson algorithm 500–502, 508
use in ILMs 501
Newton’s method 580, 582, 586
concept of 580–81
quasi- 583–4, 594–5
nonlinear constraint 22
nonlinear least squares (NLLS) 572–3, 588, 590
estimation of 589
Gauss–Newton method for 589
nonlinear regression 572–3
optimality
Karush–Kuhn–Tucker (KKT) first-order conditions of 429–30, 434–7, 442, 444, 446–50
optimization 567–8, 584, 586, 588
algorithm 580, 583
Bernt, Hall, Hall, Hausman (BHHH) method 588–91
Hessian approximation 590
use of MLE in 590
Broyden, Fletcher, Goldfarb and Shanno (BFGS) method 587–8, 590
DFP update 588
nonlinear 566, 569, 597
stopping rules 594–5
ordered choice model 333, 338–42, 346–7, 352–4
examples of 333–4
ordered probit model 337, 342–4
Poisson model 338–9, 354
ordinary least square (OLS) 503, 513
estimation of 501, 505
regression 498
individual level 504
with MSE weight 507
orthogonal design/orthogonality 23, 158–60, 162, 164–5, 167–8, 171, 173–4, 661, 676
polynomial coding 162–3
sequentially constructed 162, 165
unbalanced 159
use of choice tasks in 156
Pareto, Vilfredo 9
Parsonian functionalism 109
payment card (PCARD) 207–8, 211
potential path area (PPA)
concept of 372
preferences 28
strict 52
preferential choice behaviour 49, 67
probabilistic choice set (PCS) model 399–400, 409
probit model 57, 180, 205, 246, 311, 337, 340, 611, 634
bivariate 213
multinominal 520, 546, 551, 566, 590
multiple discrete-continuous (MDCP) model 442–4, 448
ordered model 333, 337, 340, 342–5, 351–2
generalized 348
ordinal model 482–3
HB 482–4
regression 195
public transport operations data (PTOD)
137–8, 144–5
automatic fare collection (AFC) 139, 142
automatic passenger counting (APC) 139
automatic vehicle location (AVL) 139
qualitative 115, 117, 240, 458, 588, 681–2, 692
behavioural process-oriented 123–4
data 122
quantitative 8, 40, 64, 68, 135, 155, 224, 337, 343, 565, 581, 631, 634, 692
direct valuation 179
quantum choice theory 66
RAND Corporation 643
random effect assumption 257
random regret minimization (RRM) model 664
use in travel choice models 293–5, 297–303, 325
random utility class 52
random utility function 435, 658
random utility model (RUM) 49–58, 64, 66–7, 160, 184, 196, 213, 324, 334–8, 369, 383, 434, 459, 492, 607–12, 638, 657, 664, 667–8
Bayesian estimation of 493
classic 60
closed form 180
econometrics 601
log-linear 617
maximum-maximization 196, 300, 325, 442, 519, 521–4, 550–51
non-linear 444
minimum 196
non-linear 618
standard additive 610
use of CDF in 608
random utility theory (RUT) 179, 214, 384, 474, 478, 487, 616–17
concept of 457
development of 457
use in development of DCM 384
ranking models 194
rationality 26, 29–30, 34–5, 689–90
neoclassical 34
utilitarian 32
real choice 236, 242, 247, 249
reciprocity 8, 10, 33
asynchronous 34
concept of 34
recreation demand models
data variants used in 668–9
reduction of compound lotteries (ROCL) 420, 422–3
regression
edonic 23
revealed preference (RP) 10, 202, 204, 217, 303, 395, 639, 641, 668–9, 679
application of RRM model 301
disaggregate 679
estimation of 227
use of data in DCM 693
use of data in health economies 675, 679–80, 683
risk management 413
development of 414
non-traded asset 416
preferences
time 419
risk attitudes 419–20
risk aversion 417–18
multi-attribute 417–18
self-protection 415–16
insurance 414–15, 417–18
use of EUT in 415–16, 423
risk choice studies 73–4, 80–81, 84, 88, 93
between-lottery interactions 79–80
neurological aspect of 88
within-lottery interactions 77–8
root likelihood (RLH) 507–8, 512–13
root mean squared error (RMSE)
concept of 507
root predictive score (RPS) 508, 510, 512
Rosen, Sherwin 22
Roy, Rene 10, 13
sample selectivity models 355
development of 355–6
Poisson regression in 356
Samuelson, Paul 9–11, 28, 209
theories of group selection 36
Second World War (1939–45) 219
seemingly unrelated regression (SUR) 369
Sen, Amartya 365
Shepherd, Ron 10–11
similarity effect 54
Simulator of Transport, Routes, Activities, Emissions, and Land (SimTRAVEL) 112
Slutsky, Eugen 9–10
Smith, Adam 9
social capital 110
social networks 1–2, 33, 109–10, 112, 114, 666
formation of 113–14
impact on behaviour 34
word-of-mouth 33–4
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>social welfare 19–20, 28</td>
</tr>
<tr>
<td>function (SWF) 604–5, 616</td>
</tr>
<tr>
<td>Rawlsian 605</td>
</tr>
<tr>
<td>sociability 33–5</td>
</tr>
<tr>
<td>concept of 33</td>
</tr>
<tr>
<td>evolution 35</td>
</tr>
<tr>
<td>sociobiology 35</td>
</tr>
<tr>
<td>Southern California Association of Governments (SCAG) 114</td>
</tr>
<tr>
<td>Soviet Union (USSR) collapse of (1991) 102</td>
</tr>
<tr>
<td>standard expenditure function 21</td>
</tr>
<tr>
<td>stated choice (SC) 158–9, 162, 164, 270, 301, 641–2, 669</td>
</tr>
<tr>
<td>data 152, 158</td>
</tr>
<tr>
<td>experiments 119–21, 152, 238–9, 277</td>
</tr>
<tr>
<td>controlled 120</td>
</tr>
<tr>
<td>hypothetical bias in 239</td>
</tr>
<tr>
<td>non-zero Bayesian priors 171–2</td>
</tr>
<tr>
<td>studies 152–4, 156–9, 161–5, 168, 170, 172, 174, 270, 273</td>
</tr>
<tr>
<td>stated preference (SP) 202, 204, 207, 217, 303, 402, 641–2, 666, 668, 679</td>
</tr>
<tr>
<td>elicitation formats 209–10</td>
</tr>
<tr>
<td>estimation of 226</td>
</tr>
<tr>
<td>studies 296</td>
</tr>
<tr>
<td>use in DCE 679</td>
</tr>
<tr>
<td>use of data in DCM 693</td>
</tr>
<tr>
<td>use of data in health economies 675, 679–80</td>
</tr>
<tr>
<td>static psychological models 57–60</td>
</tr>
<tr>
<td>context dependent preference (CDP) model 58–9</td>
</tr>
<tr>
<td>EBA model 58–9, 66</td>
</tr>
<tr>
<td>Thurstone 57–8</td>
</tr>
<tr>
<td>Stone, Sir Richard 7, 14</td>
</tr>
<tr>
<td>structural equation modelling (SEM) 369</td>
</tr>
<tr>
<td>study design 152–4, 158–64, 169–70</td>
</tr>
<tr>
<td>attribute levels 155</td>
</tr>
<tr>
<td>objectives 157–8</td>
</tr>
<tr>
<td>stated choice (SC) design 157, 159, 162–5, 168, 170, 273</td>
</tr>
<tr>
<td>subjective well being (SWB) 347</td>
</tr>
<tr>
<td>survey data sets 117–19</td>
</tr>
<tr>
<td>collection 119</td>
</tr>
<tr>
<td>longitudinal data 122</td>
</tr>
<tr>
<td>transitivity 53, 79</td>
</tr>
<tr>
<td>concept of 52</td>
</tr>
<tr>
<td>weak stochastic 53</td>
</tr>
<tr>
<td>travel behaviour 105, 109, 112, 115–16, 131, 137–8, 142–4, 146, 302–3, 374, 688–9</td>
</tr>
<tr>
<td>activity-travel choice behaviour 114–15, 117</td>
</tr>
<tr>
<td>activity-travel engagement 122</td>
</tr>
<tr>
<td>car-sharing schemes 693</td>
</tr>
<tr>
<td>children 144</td>
</tr>
<tr>
<td>impact of ICT on 691</td>
</tr>
<tr>
<td>impact of road pricing on 692</td>
</tr>
<tr>
<td>new vehicle technologies 693–4</td>
</tr>
<tr>
<td>self-reported 134–8</td>
</tr>
<tr>
<td>tracing technologies 137–45</td>
</tr>
<tr>
<td>travel diaries 134–7</td>
</tr>
<tr>
<td>travel choice models 290–91, 303–4, 548–9</td>
</tr>
<tr>
<td>additional complexity 297–8</td>
</tr>
<tr>
<td>alternative 297–8, 301–3</td>
</tr>
<tr>
<td>contextual concavity model 293</td>
</tr>
<tr>
<td>discrete 290</td>
</tr>
<tr>
<td>EBA rule 292, 295</td>
</tr>
<tr>
<td>identification issues in 294–5</td>
</tr>
<tr>
<td>linear-additive utility maximization rule 292, 299–300</td>
</tr>
<tr>
<td>random utility maximization (RUM) model 300</td>
</tr>
<tr>
<td>relative advantage model 293</td>
</tr>
<tr>
<td>use of RRM model in 293–5, 297–303, 325</td>
</tr>
<tr>
<td>trust 40</td>
</tr>
<tr>
<td>neurochemical elements 39–40</td>
</tr>
<tr>
<td>Tversky, Amos 29</td>
</tr>
<tr>
<td>uncertainty 3, 8, 18, 24, 73, 93, 131, 164, 202, 214, 220, 227, 414, 422–3, 488, 606, 639, 642, 650, 681, 691</td>
</tr>
<tr>
<td>in forecasting 643</td>
</tr>
<tr>
<td>measurement of 460–61</td>
</tr>
<tr>
<td>neutral 423</td>
</tr>
<tr>
<td>price 492</td>
</tr>
<tr>
<td>respondent 213</td>
</tr>
<tr>
<td>threshold of 244</td>
</tr>
<tr>
<td>unquantifiable 643</td>
</tr>
<tr>
<td>United Kingdom (UK) 365–6, 676, 680</td>
</tr>
<tr>
<td>Department of Transport 629</td>
</tr>
<tr>
<td>HS2 high-speed rail project 629–30</td>
</tr>
<tr>
<td>National Institute for Health and Clinical Excellence (NICE) 676</td>
</tr>
<tr>
<td>United States of America (USA) 107–8, 115, 118, 227, 373–4, 615</td>
</tr>
<tr>
<td>Bay Area Rapid Transit (BART) 628, 641–2</td>
</tr>
<tr>
<td>Census 373</td>
</tr>
<tr>
<td>Clean Water Act 203</td>
</tr>
<tr>
<td>Department of the Interior 238</td>
</tr>
<tr>
<td>District of Columbia Court of Appeals</td>
</tr>
<tr>
<td>Environmental Protection Agency (EPA) 204</td>
</tr>
<tr>
<td>Public Use Microdata Samples (PUMS) 640</td>
</tr>
<tr>
<td>taxation system of 365</td>
</tr>
<tr>
<td>University College London (UCL) 8</td>
</tr>
<tr>
<td>University of Alberta faculty of 178</td>
</tr>
<tr>
<td>University of California, Berkeley Haas Business School</td>
</tr>
</tbody>
</table>
Handbook of choice modelling

Experimental Social Sciences Laboratory (XLAB) 549
University of Leeds 160–61
US Consumer Expenditure Survey 15
utilitarianism 8, 297
classical 20
utility 9–10, 24, 28, 85, 290, 434, 540, 545, 606, 655
decision 23–5
fixed model 49–50
indirect 21, 23
individual 40
instant 23–4
inter-temporal 10
level 16–17
marginal 9, 14, 20, 431, 447
measurement of 13, 21
non-linear 430
of income
constant marginal (CMUI) 610, 612, 614–16
recovery of 11
remembered 23–4
stochastic source of 650
subjective expected (SEU) 422–3
utility distribution function 51
utility form 430, 435, 445, 447
linear 428
Box-Cox 447
non-linear 428
utility function 212, 297–8, 384–5, 417, 430, 432, 445
direct 12
indirect 12, 14, 21–2, 216–17
indirect conditional 607
kinky 492
random 435, 616
reduced form 22
stochastic component of 213–14
sub- 216, 433
utility model
fixed 50
neoclassical 20
random 50–51, 56–7, 196, 324, 338, 612
nonlinear 618
Uzawa, Hirofumi 11
values of travel time savings (VTTS) 395
calculation of 277
cumulative distribution function of 395
estimates of 408
heterogeneity in 394–5
weighted least squares (WLS) 511, 513
estimation of 504–6, 512
regression 498, 500, 504
with MSE weight 507, 509
welfare economics 202, 219, 303–4, 601, 616, 619–20
neoclassical 207, 621
well-being 18, 40
neoclassical measure of 16–17
Williams, George 35
willingness-to-accept (WTA) 16–18, 29, 212–13, 218, 220, 603, 661, 664, 667
compensation 203
marginal (MWTA) 17
use of CV in measurement of 220–21
direct question (DQ) for 207
income elasticity of 203, 220–23
marginal (MWTP) 17, 269
space model 662
use of AN-A in 665
use of CV in measurement of 220–21, 225–6
World Wildlife Fund (WWF) 242
Yugoslavia
Yugoslav Wars (1991–99) 102