accessibility measurement 370–72
 concept of 370
 cumulative opportunities approach 369–70
dynamic transport model 372
 gravity based 369
 individual–specific 371–2
 proximity based 369
 utility-based approach 370
ACCRA
 Cost of Living indices 15
Akaike information criteria (AIC) 314, 392–3
allocation
 Pareto efficient 29
 random 29
alternative specific constraints (ASC) 208
altruism 9–10, 36, 40
genetic 35–6
analysis of variance (ANOVA) 157
appraisal
 Kaldor–Hicks compensation criterion
 (Pareto improvement) 604, 617–18
 Pareto criterion 604–5
 Scitovsky criterion 604
Archimedean copula 261–2
Ariely, Dan 2
artificial intelligence (AI)
 potential use in DCM theory
asymmetric value function 284
asymptomatic variance-covariance (AVC)
 matrix 157, 161–2, 164–5, 167, 170
 in DCM 168, 171
attribute non-attendance (AN-A) 271–2,
 274–6, 278–81, 323, 664
calculation of VTTS in 277
definitions of 272
developments 280
self-reported 274
 use in WTP estimation 665
attribute processing 269–70, 272–5, 279–80,
 284–6
 induced 272
 heterogeneity in 272
 rules of 271–2, 275
 strategies (APS) 269, 274–5, 323–4, 326
 attribute thresholds 281–2, 284–5
Auspitz, Rudolph 10
Australia 277, 355, 675
automatic number plate recognition (ANPR)
 137–8, 144–5
 concept of 139
 average partial effects (APE) 344–5
balanced incomplete block designs (BIBDs)
 196
 concept of 182–3
Bayesian estimation/inference 457, 488–93, 657
 hierarchical (HB) 458–61, 482–4, 486–8, 491,
 500, 507–11
 regression models 459, 478
 of RUM 493
 use in implementation of MCMC 488
 use of grid methods in 462
 use of HPDI in 461
Bayesian information criterion (BIC) 277, 314,
 317, 489
behavioural economics 51, 291
 anomalies in 620
 behavioural realism 401–2
Bernoulli random variable 336
best-worse choice (BWCHOICE) 209
Best-Worst Scaling (BWS) 180–81, 183, 186–8,
 195–6, 681
 concept of 178
 development of 178–81, 184
 maxdiff model 180, 188–92, 194–5
 MNL model 187–9, 191–2
 Multi-profile Case (Case 3) 184–6, 188–90,
 192–3
 Object Case (Case 1) 181–2, 186–90, 192,
 194–5
 Profile Case (Case 2) 183–4, 186–9, 192–3
 use in health economies 681–3
Bentham, Jeremy 10
 Introduction to the Principles of Morals and
 Legislation (1789) 8–9
 view of utility 24
bidding game (BGAME) 207–8, 210
 binary choice data 265
 cross-validation of 262–4
Bohr, Niels
 elegant correspondence principle of 622
Canada
 Environmental Resource Inventory (EVRI)
 202–3
candidate welfare theory 620–21
choice alternative 565–6
choice behaviour 1, 51, 56–7, 268–70, 629–31, 654, 670
goal pursuit 654–5
independence 54
regularity 55
stationarity 55–6
transitivity 52
choice context 101, 108–9, 113–14, 120–21, 124
bioecological model 102–11
global influence 107
historical time and place 102–4, 107–8, 111–12
human agency 103
human development 104–7
linked lives 103, 107
person-process-context-time (PPCT) model 105–9, 124
timing of lives 103–4
choice experiments (CE) 661
WTP estimates 670
choice modelling (CM) 1–2, 67–8, 73, 117–18, 206, 269, 413–14, 423, 499, 618, 641, 643, 649, 658, 661, 667–71
big data 656–8
decision rules 663–5
development of 498
heterogeneity in 662
incentive compatibility 666–7
multiple goal pursuit 654–5
multi-stage 649–50, 653–4, 657–8
non-compensatory 656
nonparametric 656–8
spatial choice 669–70
use of latent class models in 314
Clark–Groves mechanism 28
Cobb–Douglas demands 14
Cobb–Douglas price index 15
cognitive psychology 26–7, 29
commodities 18
hedonic 22
common consequence effect (CCE) 78, 84
common ratio effect (CRE) 76–80, 82, 84
classical 94
patterns of 93
compensating variation (CV) 603
composite marginal likelihood 576
compromise effect 54
computable general equilibrium (CGE) 607
conjoint choice experiments
hypothetical bias in 241–3
Constant Elasticity of Substitution (CES) 15, 617
consumer behaviour 1, 23–5, 34, 478, 519, 649, 651, 653–4, 694
money-metric utility view of 13
neoclassical modelling of 24
non-positivist analysis 101
studies of 7, 22
use of RUM in modelling 450
consumer demand 1
consumer measurement
brain activity 36–40
consumer theory 10–11, 24, 212
economic 40
neoclassical 9–10, 18, 26, 207–8
consumption 25
contingent valuation (CV) 202–3, 205–6, 211–12, 217, 221, 224–5, 611, 661
application of 238
bequest value 218
criticisms of 222–3, 225, 666
development of 204, 218–19, 228
existence value 215–16
relationship with DCE 206–7
relationship with elicitation formats 205, 207, 209–10
random utility framework 213–14
stewardship value 215–16
studies/surveys 204–5, 213, 217–20, 223–4, 227–8, 249
use in measurement of WTA/WTP 220–21, 225–6
use value 215
continuous utility index 11
conventional demand theory 33
convergence 583
g-linear 581, 585–6
g-quadratic 581–2
g-superlinear 581
speed of 581
cost–benefit analysis (CBA) 601, 603, 605–7, 676, 684
cost–utility analysis (CUA) 676, 684
Court, Andrew 21
covariance matrix 437, 486, 523–4, 533–4, 536–7, 541–3
Cholesky factorization of 523, 525, 527, 536, 539–40
variance–covariance (VC) matrix 159–60, 384–5, 442–3
cultural constructs 116, 123
cumulative density function (CDF) 257, 260, 263, 336–7, 395, 487, 608, 613
approximation of 258
continuous 261
derivatives of 440
cumulative prospect theory (CPT) 81
data collection 131–2
decision neuroscience 66
deflation 13
demand analysis
neoclassical 13
demand function 14, 17
Gorman polar form 14
Hicksian 11
market 11
demand systems
derivation of 11
neoclassical 15
discrete choice 22–3, 290, 539
binomial 257
discrete-continuous choice models 3–4
mixed 608
multiple (MDC) 427–30, 444, 448–9, 451
KKT-based 430, 444, 446
random utility maximization (RUM) 428, 451
KKT-based 447–8
single (SDC) 427–9
Diewert, Erwin 15
Dupuit, Jules 9, 16
observations of changes in consumer well-being 18
dynamic psychological models 59–60, 65
‘horse race’ choices model 60
independent Poisson 60
linear ballistic accumulator (LBA) type
sequential sampling choice model 61–3, 65–6
associative accumulation model (AAM) 64–5, 67
attention modulated drift-diffusion model (AM-DDM) 64–5
decision field theory (DFT) 63–4, 67
leaky competing accumulator (LCA) model 63–4, 67
dynamic stochastic programming 24–5
economic behaviour 36, 40
econometric demand analysis 14–15
Edgeworth, Francis 8–9, 24
elicitation formats 3, 28, 73, 102, 110, 117, 203
dichotomous choice (DC) 239–41, 246
discrete choice 205
double-bounded binary choice (DBBC) 208, 213
relationship with CV 205, 207, 209–10
single binary choice (SBC) 208, 210, 228
single multinomial choice (SMC) 208–9, 211
stated preference 209–10
elimination by aspects (EBA) theory 292
concept of 58
endogeneity 114, 171, 280, 449, 628, 663
in pricing 668
equivalent variation (EV) 603
error theory 49
European Union (EU) 103
expected monetary values (EVs) 78
expected utility theory (EUT) 73, 76–8, 80–81, 89, 93–4, 249, 418–19
alternatives to 90
betweenness property of 76
concept of 75
departures from 84
use in risk management 415–16, 423
use on lottery pair response rates 249
experimental design (ED) 156, 661–2
concept of 157
extreme value (EV) 442
generalized (GEV) 171, 325, 370, 442, 439, 519, 522–3, 550–51
mixed (MMDCEV) 441
multiple discrete-continuous extreme value (MDCEV) model 114, 439, 441–2, 444, 450, 635
multiple discrete-continuous generalized extreme-value (MDCGEV) model 439–40
multiple discrete-continuous nested extreme-value (MDCNEV) model 439–40
multivariate (MEV) 610–11, 613–16
logsum issued in 615
random variable 523
extreme value density function 438
fairness 40
final prices 17
Fisher, Irving 10, 13
forecasting 627–8, 635–6, 682
aggregate 632–3
disaggregate 632–3
discriminant analysis 628
errors 631–3, 642–3
models
error 642
inputs 637–9
temporal transfer 637–8
of discrete-continuous choice 634–5
pivot point 633–4
population 640–41
iterative proportional fitting (IPF) 640–41
quadratic minimisation (QUAD) 640
France
Paris 13, 371
Frisch, Ragnar 13
Gaussian copula 262
concept of 261
use with method of sieves 261–2
generalized cost function 373
Generalized Leontief cost function 15
generalized method of moments (GMM) 353
Global Positioning System (GPS) 122–3, 131, 133, 137–9, 144
diaries 143
measurement 140
global system for mobile communications (GSM) 131, 133, 137–40, 143–4
measurements 140
goods 11, 447
durable 10
inside 434–6
market 27
non-durable 10
outside 434–5
Gorman, Terence 14–15
Gossen, Hermann 9
Greece 349
Hägerstrand, T.
time-space prism (TSP) concept 372
Hall, Robert 15
Hamilton, William 35
health economies 678, 683–4
 data use in 675, 679–80, 683
 quality adjusted life year (QALY) 676–7, 684
 use of BWS in 681–3
 use of DCEs in 675–9, 681–3
hedonic taste 23
hedonic products
market equilibrium 22
 of household production 21–2
Hessian 341, 568, 574–5, 580, 584–6, 588, 591–2
 analytic 582
 approximation of 579, 583, 587–90
 BHHH 590
 empirical 577–8
 finite difference 593
 ill-conditioned 548
 matrix 547, 573–4
 singular 549
heterogeneity 3, 15, 20, 25, 116, 270, 272, 278, 280, 311–12, 317, 326, 346–9, 354, 393, 458
 cross-individual 20
 decision rule 324–6
 deterministic 313, 325
 in CM 662
 in HCM 394–5
 in induced attribute processing 272
 in IP strategies 273
 intra-individual 20
 in VTTS 394–5
 modelling parameter 350–51
 multivariate regression 478–9
 preference 18–19, 270, 277, 311
 random 316, 318
 taste 20, 311–12, 314, 316, 318, 394, 662
 unobserved 409
 within-class 278–9
heteroscedasticity 282, 326
Hicks, John 9–10, 16, 28, 219
Hicks–Samuelson formulation 10
highest posterior density intervals (HPDI)
 use in Bayesian estimation/inference 461
homogeneity
 intra-individual 315
Hotelling, Harold 10
household production
 concept of 21
 hedonic products of 21–2
Houthakker indirect addilog system 15
human capital 416
aims of 386
 concept of 386–7, 521
 conditional choice probability in 387
 development of 383, 410
 efficiency 397
 error structure 543–5
 estimation of 392–3, 399, 406–7
 heterogeneity in 394–5
 identification of 527–8, 530–32, 534–5, 539, 548, 551
 confirmatory factor analytic model 532–4
 structural equation models 535–6
 in logit models 519–20
 kernel of 521–2
 latent variables 388–91, 400–401, 404–5, 408–9, 521, 524–5, 528
 multiple indicator response (MIMIC) model 526
 normalization of 391–2
 production of 393
 use in extension of DCM 386, 410
hyperbolic discounting 32
hypothetical bias 239–42, 642
 advisory referenda and realism 248
 in conjoint choice experiments 241–3
 in MPL 241
 mitigation of 244
 instrument calibration 244
 statistical calibration 244–8
 salient rewards 248–9
hypothetical choice 236–9, 242, 247–50
 DC elicitation in 239–40
incentive compatibility 239
 in choice behaviour 237–8
independence of irrelevant alternatives (IIA)
 condition 187, 211, 320
 in MNL model 652
 restrictive property 214
indirect utility function 11–12
individual level models (ILMs)
 estimation of 498–500
 use of Newton–Raphson algorithm in 501
information communications technology (ICT) 113, 115
 impact on travel behaviour 691
information processing (IP) 272, 280
 strategies (IPS) 273, 323
intemporal choice 39
International Choice Modelling Conference 2
Jorgenson, Dale 15
judgmental noise
 concept of 88
Handbook of choice modelling

Kahneman, Daniel 2, 29

kernel regression
concept of 263–4

labor force participation 101
labor relations 101
labor supply 367–8, 374
collective model of 367
Lagrangian function 435–6
Lancaster, Kevin 21

latency 116
constructs 117
response 665

latent class models 316–17, 323–5, 350–51, 388
class allocation 315, 317–18, 323–4
concept of 314–15
contrasts in 316
correlation between coefficients 318–19
disaggregate elasticities 319–21
posterior analysis 317–18
use in CM 314

latent regression 336, 338
model 337, 339–40, 349
variables of 341

Lau, Larry 15
Lewbel, Arthur 15
Lieben, Richard 10
likelihood function 312, 439
linear budgets 20
constraints 11, 18
linear expenditure system (LES) 430, 432
linear regression model 159, 498
homoscedastic 160
log-likelihood 349–52, 398, 504
function 502
negative 596
unconditional 350
logistic regression models 474–5
logit models 168, 173, 285, 346, 351, 405, 636
binary 353
conditional 194
ML estimates of 195
continuous mixed 311, 319–22
generalized rank ordered (GROL) 188
hybrid choice model (HCM) 519–20
latent class 311, 321
mixed multinomial (LC_MMNL) 278
mass point 313–14
mixed 259–60, 278, 611–12, 636, 662
HB 509, 512–13
modified 271

constrained 653
generalized (GMNL) 188, 662
heteroscedastic Gumbel scale (HG-SMNL) 283
IIA property of 652
mixed (MMNL) 164, 170–72
sequential best-worst (SBWMNL) 682
use in BWS 187–9, 191–2
nested (NL) 170–71, 371
non-linear 168
regression 195
lotteries 30–32, 73, 84, 86–9, 93, 418–19, 422–3
alternative 31, 86
between-lottery interactions 79–83, 91, 93–4
choice in 29–30
hypotenuse 87–8
non-degenerate 92
options in choice set 91–2
payoffs 89–91
reduction of compound (ROCL) 420
risk 76, 84, 249, 413, 418
safe 413
state 354
two-outcome 92
within-lottery interactions 77–8, 85, 87, 91, 93

Louviere, Jordan
role in development of BWS 178–81, 184

majority of confirming dimensions (MCD) 283–4
market behaviour
revealed 26
role of decision utility in 23
market demand 19–20
market demand function 11
marketing 649–51, 658, 689
choice set formation 651–3, 667
decision strategy selection 653–4
stock-keeping units (SKUs) 650–51
use of big data in 656–7
Markov process 58
Marschak–Machina (M–M) triangle 76, 81–3, 85–6, 90–91
Marshall, Alfred 9, 16
Marshallian consumer surplus 614
as welfare measure 619
maximum likelihood (ML) 192, 194–5, 259, 265, 312, 314, 574, 577, 631, 633
estimates of conditional logit 195
estimation (MLE) 340–41, 352, 354, 476–7, 566, 569–70, 572–6, 588, 590
quasi- (QMLE) 576–7, 588
use in BHHH 590
use in discrete choice models 570
maximum simulated log-likelihood (MSL) 313, 392
McKenzie, Lionel 11
mean square error (MSE) weight 508–10
aggregate 511, 513
for HB 507
for WLS 507, 509
microeconomic theory 29, 519, 688–9
neoclassical 602–3, 619
microsimulation models 122, 325
Monte Carlo (MC) 352–3, 636
approximation 466
integration 392
Markov chain (MCMC) 459, 465–6, 472, 475–6, 483, 488, 491
Bayesian hypothesis testing 488–91, 493
Gelfand and Dey method 490
Gibbs sampling 466–70, 473
HB logit model 487
HB probit model 484–6, 492
HB regression 480–82, 484
Metropolis–Hastings (MH) sampling 466, 473–5, 477–80
ordinal probit model 483–4
Savage–Dickey density ratio 490
simulations 174, 462, 464, 506–7, 548
Muelbauer, John
Almost Ideal Demand System 15
multicollinearity 159
concept of 546–7
multiple price list (MPL) 241
hypothetical bias in 241
multivariate analysis of variance (MANOVA) 158
multivariate normal (MVN) 443
distributed stochasticity 448
cumulative distribution function (MVNCDF) 442–4
errors 442, 444
Muth, John 21
National Oceanographic and Atmospheric Administration (NOAA) 238
National Survey of Families and Households (NSFH) 373
Netflix 333
neurology 37–9
substance addiction observation 39
Newton–Raphson algorithm 500–502, 508
use in ILMs 501
Newton’s method 580, 582, 586
concept of 580–81
quasi 583–4, 594–5
nonlinear constraint 22
nonlinear least squares (NLLS) 572–3, 588, 590
estimation of 589
Gauss–Newton method for 589
nonlinear regression 572–3
optimality
Karush–Kuhn–Tucker (KKT) first-order conditions of 429–30, 434–7, 442, 444, 446–50
optimization 567–8, 584, 586, 588
algorithm 580, 583
Bernt, Hall, Hall, Hausman (BHHH) method 588–91
Hessian approximation 590
use of MLE in 590
Broyden, Fletcher, Goldfarb and Shanno (BFGS) method 587–8, 590
DFP update 588
nonlinear 566, 569, 597
stopping rules 594–5
ordered choice model 333, 338–42, 346–7, 352–4
examples of 333–4
ordered probit model 337, 342–4
Poisson model 338–9, 354
ordinary least square (OLS) 503, 513
estimation of 501, 505
regression 498
individual level 504
with MSE weight 507
orthogonal design/orthogonality 23, 158–60, 162, 164–5, 167–8, 171, 173–4, 661, 676
polynomial coding 162–3
sequentially constructed 162, 165
unbalanced 159
use of choice tasks in 156
Pareto, Vilfredo 9
Parsonian functionalism 109
payment card (PCARD) 207–8, 211
potential path area (PPA)
concept of 372
preferences 28
strict 52
preferential choice behaviour 49, 67
probabilistic choice set (PCS) model 399–400, 409
probit model 57, 180, 205, 246, 311, 337, 340, 611, 634
bivariate 213
multinomial 520, 546, 551, 566, 590
multiple discrete-continuous (MDCP) model 442–4, 448
ordered model 333, 337, 340, 342–5, 351–2
generalized 348
ordi n al model 482–3
HB 482–4
regression 195
public transport operations data (PTOD) 137–8, 144–5
automatic fare collection (AFC) 139, 142
automatic passenger counting (APC) 139
automatic vehicle location (AVL) 139
qualitative 115, 117, 240, 458, 588, 681–2, 692
behavioural process-oriented 123–4
data 122
quantitative 8, 40, 64, 68, 135, 155, 224, 337, 343, 565, 581, 631, 634, 692
direct valuation 179
quantum choice theory 66
RAND Corporation 643
random effect assumption 257
random regret minimization (RRM) model 664
use in travel choice models 293–5, 297–303, 325
random utility class 52
random utility function 435, 658
random utility model (RUM) 49–58, 64, 66–7, 160, 184, 196, 213, 324, 334–8, 369, 383, 434, 459, 492, 607–12, 638, 657, 664, 667–8
Bayesian estimation of 493
classic 60
closed form 180
econometrics 601
log-linear 617
maximum/ maximization 196, 300, 325, 442, 519, 521–4, 550–51
non-linear 444
minimum 196
non-linear 618
standard additive 610
use of CDF in 608
random utility theory (RUT) 179, 214, 384, 474, 478, 487, 616–17
concept of 457
development of 457
use in development of DCM 384
ranking models 194
rationality 26, 29–30, 34–5, 689–90
neoclassical 34
utilitarian 32
real choice 236, 242, 247, 249
reciprocity 8, 10, 33
asynchronous 34
concept of 34
recreation demand models
data variants used in 668–9
reduction of compound lotteries (ROCL) 420, 422–3
regression
hedonic 23
revealed preference (RP) 10, 202, 204, 217, 303, 395, 639, 641, 668–9, 679
application of RRM model 301
disaggregate 679
estimation of 227
use of data in DCM 693
use of data in health economies 675, 679–80, 683
risk management 413
development of 414
non-traded asset 416
preferences
time 419
risk attitudes 419–20
risk aversion 417–18
multi-attribute 417–18
self-protection 415–16
insurance 414–15, 417–18
use of EUT in 415–16, 423
risky choice studies 73–4, 80–81, 84, 88, 93
between-lottery interactions 79–80
neurological aspect of 88
within-lottery interactions 77–8
root likelihood (RLH) 507–8, 512–13
root mean squared error (RMSE)
concept of 507
root predictive score (RPS) 508, 510, 512
Rosen, Sherwin 22
Roy, Rene 10, 13
sample selectivity models 355
development of 355–6
Poisson regression in 356
Samuelson, Paul 9–11, 28, 209
thories of group selection 36
Second World War (1939–45) 219
seemingly unrelated regression (SUR) 369
Sen, Amartya 365
Shepherd, Ron 10–11
similarity effect 54
Simulator of Transport, Routes, Activities, Emissions, and Land (SimTRAVEL) 112
Slutsky, Eugen 9–10
Smith, Adam 9
social capital 110
social networks 1–2, 33, 109–10, 112, 114, 666
formation of 113–14
impact on behaviour 34
word-of-mouth 33–4
social welfare 19–20, 28
 function (SWF) 604–5, 616
 Rawlsian 605
sociality 33–5
 concept of 33
 evolution 35
sociobiology 35
Southern California Association of Governments (SCAG) 114
Soviet Union (USSR)
 collapse of (1991) 102
standard expenditure function 21
stated choice (SC) 158–9, 162, 164, 270, 301, 641–2, 669
data 152, 158
 experiments 119–21, 152, 238–9, 277
 controlled 120
 hypothetical bias in 239
 non-zero Bayesian priors 171–2
 studies 152–4, 156–9, 161–5, 168, 170, 172, 174, 270, 273
stated preference (SP) 202, 204, 207, 217, 303, 402, 641–2, 666, 668, 679
elicitation formats 209–10
estimation of 226
studies 296
use in DCE 679
use of data in DCM 693
use of data in health economies 675, 679–80
static psychological models 57–60
 context dependent preference (CDP) model 58–9
 EBA model 58–9, 66
 Thurstone 58–7
Stone, Sir Richard 7, 14
structural equation modelling (SEM) 369
study design 152–4, 158–64, 169–70
 attribute levels 155
 objectives 157–8
 stated choice (SC) design 157, 159, 162–5, 168, 170, 273
subjective well being (SWB) 347
 survey data sets 117–19
 collection 119
 longitudinal data 122
transitivity 53, 79
 concept of 52
 weak stochastic 53
travel behaviour 105, 109, 112, 115–16, 131, 137–8, 142–4, 146, 302–3, 374, 688–9
 activity-travel choice behaviour 114–15, 117
 activity-travel engagement 122
 car-sharing schemes 693
 children 144
 impact of ICT on 691
 impact of road pricing on 692
 new vehicle technologies 693–4
 self-reported 134–8
 travel choice models 290–91, 303–4, 548–9
 additional complexity 297–8
 alternative 297–8, 301–3
 contextual concavity model 293
 discrete 290
 EBA rule 292, 295
 identification issues in 294–5
 linear-additive utility maximization rule 292, 299–300
 random utility maximization (RUM) model 300
 relative advantage model 293
 use of RRM model in 293–5, 297–303, 325
trust 40
 neurochemical elements 39–40
Tversky, Amos 29
uncertainty 3, 8, 18, 24, 73, 93, 131, 164, 202, 214, 220, 227, 414, 422–3, 488, 606, 639, 642, 650, 681, 691
 in forecasting 643
 measurement of 460–61
 neutral 423
 price 492
 respondent 213
 threshold of 244
 unquantifiable 643
United Kingdom (UK) 365–6, 676, 680
 Department of Transport 629
 HS2 high-speed rail project 629–30
 National Institute for Health and Clinical Excellence (NICE) 676
United States of America (USA) 107–8, 115, 118, 227, 373–4, 615
 Bay Area Rapid Transit (BART) 628, 641–2
 Census 373
 Clean Water Act 203
 Department of the Interior 238
 District of Columbia Court of Appeals
 Environmental Protection Agency (EPA) 204
 Public Use Microdata Samples (PUMS) 640
taxation system of 365
University College London (UCL) 8
University of Alberta
 faculty of 178
University of California, Berkeley
 Haas Business School

Stephane Hess and Andrew Daly - 9781781003152
Downloaded from PubFactory at 09/15/2023 04:47:44AM
via free access
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handbook of choice modelling</td>
<td>708</td>
<td></td>
</tr>
<tr>
<td>Experimental Social Sciences Laboratory</td>
<td>(XLAB) 549</td>
<td></td>
</tr>
<tr>
<td>University of Leeds 160–61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Consumer Expenditure Survey 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>utilitarianism</td>
<td>8, 297</td>
<td></td>
</tr>
<tr>
<td>classical</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>utility</td>
<td>9–10, 24, 28, 85, 290, 434, 540, 545, 606, 655</td>
<td></td>
</tr>
<tr>
<td>decision</td>
<td>23–5</td>
<td></td>
</tr>
<tr>
<td>fixed model</td>
<td>49–50</td>
<td></td>
</tr>
<tr>
<td>indirect</td>
<td>21, 23</td>
<td></td>
</tr>
<tr>
<td>individual</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>instant</td>
<td>23–4</td>
<td></td>
</tr>
<tr>
<td>inter-temporal</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>level</td>
<td>16–17</td>
<td></td>
</tr>
<tr>
<td>marginal</td>
<td>9, 14, 20, 431, 447</td>
<td></td>
</tr>
<tr>
<td>measurement of</td>
<td>13, 21</td>
<td></td>
</tr>
<tr>
<td>non-linear</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td>of income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>constant marginal (CMUI)</td>
<td>610, 612, 614–16</td>
<td></td>
</tr>
<tr>
<td>recovery</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>remembered</td>
<td>23–4</td>
<td></td>
</tr>
<tr>
<td>stochastic source of</td>
<td>650</td>
<td></td>
</tr>
<tr>
<td>subjective expected (SEU)</td>
<td>422–3</td>
<td></td>
</tr>
<tr>
<td>utility distribution function</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>utility form</td>
<td>430, 435, 445, 447</td>
<td></td>
</tr>
<tr>
<td>linear</td>
<td>428</td>
<td></td>
</tr>
<tr>
<td>Box-Cox</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>non-linear</td>
<td>428</td>
<td></td>
</tr>
<tr>
<td>utility function</td>
<td>212, 297–8, 384–5, 417, 430, 432, 445</td>
<td></td>
</tr>
<tr>
<td>direct</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>indirect</td>
<td>12, 14, 21–2, 216–17</td>
<td></td>
</tr>
<tr>
<td>indirect conditional</td>
<td>607</td>
<td></td>
</tr>
<tr>
<td>kinky</td>
<td>492</td>
<td></td>
</tr>
<tr>
<td>random</td>
<td>435, 616</td>
<td></td>
</tr>
<tr>
<td>reduced form</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>stochastic component of</td>
<td>213–14</td>
<td></td>
</tr>
<tr>
<td>sub-</td>
<td>216, 433</td>
<td></td>
</tr>
<tr>
<td>utility model</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>fixed</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>neoclassical</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>random</td>
<td>50–51, 56–7, 196, 324, 338, 612</td>
<td></td>
</tr>
<tr>
<td>nonlinear</td>
<td>618</td>
<td></td>
</tr>
<tr>
<td>values of travel time savings (VTTS)</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>calculation of</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>cumulative distribution function of</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>estimates of</td>
<td>408</td>
<td></td>
</tr>
<tr>
<td>heterogeneity in</td>
<td>394–5</td>
<td></td>
</tr>
<tr>
<td>weighted least squares (WLS)</td>
<td>511, 513</td>
<td></td>
</tr>
<tr>
<td>estimation of</td>
<td>504–6, 512</td>
<td></td>
</tr>
<tr>
<td>regression</td>
<td>498, 500, 504</td>
<td></td>
</tr>
<tr>
<td>with MSE weight</td>
<td>507, 509</td>
<td></td>
</tr>
<tr>
<td>welfare economics</td>
<td>202, 219, 303–4, 601, 616, 619–20</td>
<td></td>
</tr>
<tr>
<td>neoclassical</td>
<td>207, 621</td>
<td></td>
</tr>
<tr>
<td>well-being</td>
<td>18, 40</td>
<td></td>
</tr>
<tr>
<td>neoclassical measure of</td>
<td>16–17</td>
<td></td>
</tr>
<tr>
<td>Williams, George</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>willingness-to-accept (WTA)</td>
<td>16–18, 29, 212–13, 218, 220, 603, 661, 664, 667</td>
<td></td>
</tr>
<tr>
<td>compensation</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>marginal (MWTA)</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>use of CV in measurement of</td>
<td>220–21</td>
<td></td>
</tr>
<tr>
<td>direct question (DQ) for</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>income elasticity of</td>
<td>203, 220–23</td>
<td></td>
</tr>
<tr>
<td>marginal (MWTP)</td>
<td>17, 269</td>
<td></td>
</tr>
<tr>
<td>space model</td>
<td>662</td>
<td></td>
</tr>
<tr>
<td>use of AN-A in</td>
<td>665</td>
<td></td>
</tr>
<tr>
<td>use of CV in measurement of</td>
<td>220–21, 225–6</td>
<td></td>
</tr>
<tr>
<td>World Wildlife Fund (WWF)</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>Yugoslavia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yugoslav Wars (1991–99)</td>
<td>102</td>
<td></td>
</tr>
</tbody>
</table>