Index

A10 Motorway 273
Abdel-Aty, M. 38, 56–7
ACARE (Advisory Council for Aeronautics in Europe) 252
Accenture 230
Action Research 243
activities of innovation 243–4
‘actors’ activation 240–41
air cargo 231, 233
Althusser, L. 210–11
ambiguity aversion 31–2, 40, 47
Ambrogio IT (rail wagon management system) 261
Amsterdam 7
AnachB.at (traffic information portal) 267
anchoring 31–2, 38
Andrejevic, M. 210, 217
ANPR (Automatic Number Plate Recognition) 207, 274
AODV (Ad hoc On–Demand Distance Vector) 177
App Inventor (software) 122–3, 136
apps (smartphone applications) business potential of 12–13
e-hailing apps 12–13
and ITS commercialization routes 236–7
and location data services 217
and marketing of ICT application benefits 210
and mobile phone penetration 1–2
and mobility data collection 116, 122–4
and personal security perceptions 116, 122–4, 133, 136, 137
and shared mobility 9, 11–12
Smart-Way see Smart-Way
transport mode overview 207–8
and travel information 26, 44
architectures of networking 241–2
Armstrong, A. 227
Athens 59, 74–6, 78, 80, 82, 84
ATTs (Advanced Traveller Information Systems) 56, 57, 77, 90
Atkins, S. 198
Atlanta 165
ATT (advanced transport telematics) 250
autonomous vehicle 7, 48, 115, 172, 300
average travel speed (GPS cycle data) 191–2, 194–6
Avineri, E. 35, 37, 38, 40
B2B (business to business) market process 235
B2C (business to consumer) market process 235
B2G (business to government) market process 235
Bacon, J. 239
Ball, K. 210
Banister, D. 161
Barcelona 59, 74–6, 78, 80, 82, 84
Barron, G. 30
Bartle, C. 44
behaviour see travel behaviour
‘belonging’ 240
Ben-Akiva, M. 43
Ben-Elia, E. 35, 38–9, 40, 42
Bentham, Jeremy 27
Bergenhem, C. 163
Bernoulli, D. 28
Bernoulli trials 176–8
Big Data 13–14, 205, 206, 212–13
BikeRoute service package 186–7, 194, 196, 197
Bilrejsplanen.dk (travel planning system) 267–8
Bliemer, M. 109

bodyscanners 220
Bogers, E. 35
bounded rationality 28–32, 42, 46, 209
Bovy, P. 37
Boyd, D. 214
Braess’ paradox 42
BRAVO (train monitoring and CIS system) 257, 269, 272
‘broadcasting’ of events 228
BRT (bus rapid transit) 8, 117, 119
Budapest 59, 74–6, 78, 80, 82, 84
‘bus on bus’ congestion 96, 97
Camusso, C. 56
Cantarella, G. 35
‘car following’ model 176
CarTALK2000 (driving assistance system) 161
Car-to-Car Communication Consortium 162
Cascetta, E. 35
CBR (constant bit rate) 177
CESAR (internet communication platform) 261–2
CETRAMs (Centros de Transferencia Modal) 118–22, 123–8, 130–33, 137
Chi Square tests 105, 106
choice architecture 45
Chorus, C. 36, 37, 40, 41, 89
Chromaroma game 206, 212–13
CISs (Customer Information Systems) 257, 269, 272
City-Go-Round (website) 143
Climate Change Conference (United Nations, 2011) 301
cloud computing model 231
cognitive architectures 242
CoI (Communities of Interest) and deployment of ITS solutions 233
diversity of members 228
and glocal communities 227, 228, 237–44
and innovation in ITS 239–45
and Intelligent Intermodal Transport Units 233–4
interaction of members 226–7, 227–8
and ITS commercialization routes 236
opportunities identified 245
policy recommendations 245–6
and revenue management systems 233
and social media 228–9
and sustainable transport 300
threats identified 245–6
‘triple A’ roadmap 239–45
collaboration (Communities of Interest) 229
collaborative innovation 243–4
‘collapse of contexts’ 214, 215
Common Transport Policy (EC) 251
comparative ignorance 31–2, 40, 47
competitive transport networks 34–5, 40–44
Completion of the Internal Market (White Paper) 251
concentration 43
Connected Boulevard partnership 6
Connected Vehicle Technology 162
contact-less information transfer 213
continuity of cycle routes 196–7
contribution of communities 241
‘convenience’ discourses 210, 211
COP 21 Forum (Paris) 301
Copenhagen 194
CoPs (Communities of Practice) 228, 236
corporate exploitation of digital labour 215, 216–17
‘corrective legislation’ 220
cost of vehicular communication networks 172–3
Cottrill, C. 116
crime, fear of 117–18
CrisisCamp Haiti (crowdsourcing platform) 144
CRITER (traffic management system) 265–6
critical theory 206
crowdsourcing
and accuracy of data 153–4
and efficient transport planning 143–5
future challenges 155–7
and Open Source Data 14
and social media 144–5
and sustainable transport 300
and travel information 26, 47–8, 143–5, 156
CyCity (cycling initiative) 179, 183, 186–99
Cyclescheme 207
cycling initiatives
access to segregated cycle facilities 197
average travel speed data 191–2, 194–6
barriers to implementation 198
BikeRoute service package 186–7, 194, 196, 197
continuity of routes 196–7
CyCity scheme 179, 183, 186–90
distance measurements 192
evaluation of GPS devices 188–9
and GPS data collection 179, 180–81, 183–5, 189–92, 199
and GPS device evaluation 188–9
improvements to ICT software 179–85, 193–7
measuring quality 183, 187–8
perceptions of cycle planning value 185
perception of improved decision support 182, 186–7, 190, 198
service package development 188–93
software innovations 193–4
stop frequency measurements 193
Swedish policy interest in cycling 184
threats and difficulties 183–5
transport planning opportunities 180–82
use of ICT in cycle planning 186–8, 190, 193–4, 198–9

Data Protection Act (1998) 212
data-sharing 212–13, 214–15, 219
defaults (in choice architecture) 45
Denrell, J. 29
Department of Conservation (New Zealand) 142
descriptional information 30, 33, 36–40, 41, 42, 46–7
Dewey, John 242
DF (Distrito Federal) 118–19, 121
Digital Chart of the World 147, 149–52
digital convergence 213–14
‘digital divide’ 154–5, 156
Digital Matatus project (Nairobi) 13
DiNucci, D. 236
direct rebound effect 298
disabled people 58, 71–2, 88–9, 208, 300
distance measurements (GPS cycle data) 192
DMIC (Delhi–Mumbai Industrial Corridor) 6
Dresden 59, 74–6, 79, 81, 83, 85
DRIVE Programme (EC) 250
driving assistance systems 161–2
DVB (Dresdner Verkehrsbetriebe AG) 59, 74–5, 79, 81, 83, 85
Dynamic HGV information 260
Dynamic Speed Limits 274–5
dynamic traffic flows 168–70, 171–2
e-Call system (Finland) 278
‘eco-friendliness’ discourses 211
ECTRI (European Conference of Transport Research Institutes) 254
Education and Inspections Act (2006) 95
e-freight 259
e-hailing apps (taxi industry) 12–13
EIRAC (European Intermodal Research Advisory Council) 254
El Rosario (CETRAM, Mexico City) 119–21, 124, 126, 132
Ellsberg, D. 32
Emmerink, R. 44
EMT (Empresa Municipal de Transportes de Valencia) 59, 74–5, 78, 80, 82, 84
der-to-end delay 166, 168, 170, 171
entrepreneurial market processes 235
EPA (Environmental Protection Agency) 163
equity 14, 15, 107, 297
ERATO (traffic management system) 257, 269, 277
Erev, I. 30–31
ERRAC (European Rail Research Advisory Council) 252
ERTICO ITS Europe (ITS stakeholder network) 252
ERTRAC (European Road Transport Research Advisory Council) 252
e-Safety forum 161
ethical, social and legal issues 214–18, 219–21
E-TRAIN (Global Positioning System) 258–9
ETSI (European Telecommunications Standards Institute) 229–30, 250–51
Ettema, D. 36
Europe 2020: a strategy for smart, sustainable and inclusive growth (EU policy) 5
European ITS Advisory Group 254
‘European Rail Traffic Management System’ initiative 233
European transport policy analysis/assessment methodology 254–6
barriers to deployment of ITS 279–81
critical review of good practices 257, 269–79
and defining Intelligent Transport Systems 249–50
future recommendations 281–3
historical focus on ITS 251–4
ICT deployment 249, 279
ITS good practices 256–7, 258–68, 289–94
key milestones of 252, 253
methodology/criteria of good practices 254–6
and variety of ITS technologies 250–51
European Transport Policy for 2010 (White Paper) 251
EUT (Expected Utility Theory) 28, 30, 31, 32, 37
eVgo (Electric Vehicle scheme) 230
evolution of ICT 1–3
and developing countries 140–41, 154–5, 156
and ‘digital divide’ 154–5, 156
and personal security perceptions 115
and travel information 25–6
EVs (Electric Vehicles) 230–31, 233
‘exploring’ 210
Facebook 217, 228
Fairclough, N. 210
Farag, S. 39, 57
feedback-based experiential information 33–4, 35, 38–40, 41–2, 43, 46–7
feedback from members (Communities of Interest) 228
Fischer, G. 228
FleetNet (driving assistance system) 161
Floating Car Data 271
Flocktracker (app) 123, 136
focus group (Smart-Way developmental study) 58–60, 63
‘footprint’, digital 212, 216
forgone payoffs 32
Fox, C. 32
framework 35, 37, 41–2, 146, 153, 217, 236, 242, 252, 255, 279, 281, 282, 298, 303
framing (in travel behaviour) 30, 36–7, 38–9, 45, 46
Franz, W. 161
FREILOT (parking toll machine system) 260
Friendsurance (app) 208
fuel consumption 163, 165, 171
Fujii, S. 42, 56, 104
Galileo291 (EU global positioning system) 55, 58, 60, 73, 209
‘gamification’ 108, 205, 207
Gao, S. 36, 37
Gärling, T. 56
Garvill, J. 104
gender 117–18, 123, 124, 125, 128–30, 132, 137
generation (ICT description mechanism) 25
GeoCommons (crowdsourcing platform) 144
GFDRR (Global Facility for Disaster Reduction and Recovery) 147
GHGs (greenhouse gases) 4
GIS (geographic information system) data 77, 149, 150, 179, 184, 190, 198
Glasgow 59, 74–6, 79, 81, 83, 85
Glennon, J. 154
GLIDE technology 7
Global Facility for Disaster Reduction and Recovery 147
global interest in ICT for transport 4–5
glocal communities 227, 228, 237–44, 300
GOAL (transport data management software) 258–9
Gonzalez, M. 116
good practices (European transport policy) 256–7, 258–68, 289–94
critical review of 257, 269–79
methodology/criteria of 254–6
Goodchild, M. 154
Google 141, 143, 149, 150, 151–2
Google+ 228
Google Maps (app) 210, 217
Google Street Map View 221
Gothenburg 182
Gotzenbrucker, G. 77
GPS (Global Positioning Systems) and crowdsourcing 144, 145
and cycle data collection 179, 180–81, 183–5, 189–92, 199
in developed countries 141
evaluation of devices 188–9
and open geospatial data 150
and personal security perceptions
123
and Smart-Way app 55, 59–60, 64, 70, 71, 73, 77–9, 81, 89
and use of ICT in cycle planning 186–8, 193–4, 198–9
Grand Lyon Urban Traffic Management System 265–6
GTF (Generalised Transport-dataFormat) 142–3
GTFS (Global Transit Feed Specifications) 141, 143
GTT (Gruppo Torinese Trasporti) 59, 74–5, 79, 81, 83, 85
Guardian (newspaper) 212
guiding principle 298–9

Habitual travel patterns 102–7, 109
Hagel, J. 227
‘hailing’ 210, 211
Haiti 144, 147, 151–2
‘Healthy Lives, Healthy People’ (White Paper) 96
Heidegger, Martin 219
Helbing, D. 41–2, 44
heuristics 29–32
HGV (Heavy Goods Vehicles) 260, 273
Hidalgo, D. 8
‘homo-economicus’ 27
Horowitz, J. 35
‘hot stoves’ 29
Hsinchun, C. 161
human capital 154, 280, 281, 297
Humphrey, S. 32
Hunter, R. 108
IATA (International Air Transport Association) 254, 271
identification of ‘actors’ 240
ideologies 210
Ilies, L. 256–7
incentives to change travel behaviour
London case study 94
background 95–101
context of 97–101
evaluation of scheme 108–9
and habitual travel patterns 102–7, 109
importance of walking to school 95–7
limitations of scheme 107–8
scheme impacts 101–5
survey results 105–8
‘nudging’ 45, 96
practical ICT use 94, 100–101, 109
reward schemes 96–7, 99–100, 102, 105–8
incident management 278
increasing reliance on ICT applications 206
Innocenti, A. 39
‘innovation cycles’ 243–4
innovation diffusion stages 2
innovation in ITS (Intelligent Transport Systems) 237–45
Innovation Strategy (OECD, 2010) 237–8
‘innovation-new-to-firm’ 237, 238–9
‘innovation-new-to-market’ 237
‘innovation-new-to-world’ 237
integrated multimodal transport 8–11
intelligent charging systems 230
Intelligent Health (health technology company) 98
International Development Center of Japan 140
‘Internet of Everything’ 6
‘Internet of Things’ 3, 302
inter-vehicle communication 161–4
iPavement 6
ISAs (Ideological State Apparatuses) 210
‘islands’ 196, 197
ITS (Intelligent Transport Systems) barriers to deployment 279–81
commercialization routes 234–7
and Communities of Interest 226–8, 229, 233, 236–7, 239–46
critical review of European good practices 257, 269–79
and crowdsourcing 145
defining 249–50
deployment of 55
European good practices 256–7, 258–68, 289–94
European timeline 3–4
future European policy recommendations 281–3
historical focus of European transport policy 251–4
innovation in 237–45
Intelligent Intermodal Transport Units 230, 231–2, 233–4
ITS architecture framework 282
methodology/criteria of European good practices 254–6
opportunities identified 245
and personal security perceptions 121
and rail networks 230, 232–3
and revenue management 230, 231, 233–4
role of 250
and smart grid domain 230–31
state-of-the-art technologies 227, 229–34, 236, 240
threats identified 245–6
and ‘triple A’ roadmap 239–45
variety of ITS technologies 250–51
ITU (International Telecommunication Union) 5–6

ITUs (Intelligent Intermodal Transport Units) 230, 231–2, 233–4
Jariyasunant, J. 116
Jayakrishnan, R. 43
Jin, W. 162
Joint Research Centre (EC) 280
Kahneman, D. 29, 30, 31
Katsikopoulos, K. 37
Keolis (Swedish public transport operator) 185
key conclusions 301–3
Khaleed, Y. 177
Kitamura, R. 42, 104
Kittler, Friedrich 213
Knockaert, J. 109
knowledge architectures 241–2
Kohl, M. 77
Kutsuplus (transport scheme) 299
Land Information New Zealand 142
language 210
Laos 147, 148, 151–2
Larrick, R. 32
‘law of effect’ 29
LBS (location-based services) 206
legislation issues for vehicular communication networks 172
Linköping 182, 189, 191–3, 196
Liu, Y. 42
Ljubljana 189, 191–3, 195
Lodge, J. 215
London underground 8, 97
Loomes, G. 32
loss aversion 30–31, 36–7, 38–9, 45, 46
Lu, W. 162
Lu, X. 42
Luce, R. 28
‘lure of affect’ 31
Lyon, David 214, 216
Lyons, G. 39, 57
MAC (Media Access Control) 177
MAC (Migration Authorisation Code) codes 216
Mahmassani, H. 42, 43
Malmö 182
Mandel, B. 142–3
Index

MANET (Mobile Ad hoc Network) 161–2
March, J. 29
marketing of ICT application benefits 209–11
Masdar (Abu Dhabi) 7
‘Mastering the Internet’ (British security agency) 213
Mayer-Schoenberger, Viktor 216
medium theory 205
Meteotrans–European Weather Data Exchange 264–5
Metropolitan Police 212
Mexico City 115, 116, 117–37
Mexipuerto (CETRAM, Mexico City) 119–21, 124–5, 126, 127, 132, 133
Ministry for Economic Development (New Zealand) 142
‘mission creep’ 215–16, 218
mobile phone penetration 1–3, 116, 154–5, 156
mobility data collection 116–17, 122–3
mobilization of communities 240–41
modification (ICT description mechanism) 25
Mokhtarian, P. 25
Monte Carlo traffic simulation 164–5, 167, 176–8
Morgenstern, O. 28
MOVES (Motor Vehicle Emission Simulator) 163, 172
multimodal travel information services 270
Multiplaza Aragon (shopping centre, Mexico City) 120
Murakami-Wood, D. 210

Nakayama, S. 42
NAT (Norm Activation Theory) 33
National Data Warehouse for Traffic Information (Netherlands) 213
National Imagery and Mapping Agency (US) 147
National Transport Model (UK) 184
NAVSTAR GPS (NAVigation Satellite Timing And Ranging Global Positioning System) 55
Network Simulator (v.2) 166
neutrality (ICT description mechanism) 25
New Zealand 142
Newton, A. 118
NGSIM (Next Generation Simulation) 165
Nice 6
Nielsen, O. 143
Nissenbaum, Helen 214, 216
non-competitive transport networks 34–40
norms (in choice architecture) 45
‘nudging’ 45, 96
O’Reilly Media Web 2.0 Conference (2004) 236
O’Reilly, Tim 236
OASA (Athens Urban Transport Organisation) 59, 74–5, 78, 80, 82, 84
objective-led transport planning 181–2
OECD (Organisation for Economic Co-operation and Development) 140, 142, 237–8
Olson, M. 44
Open Data Initiatives 142, 145, 146, 213, 298
open geospatial data accuracy of 146–53
and efficient transport planning 141–3
future challenges 155–7
and travel information 141–3, 156
Open Government Benchmark Study (2010) 142
Open Government Data (book) 146
Open Source Data 13–14, 150
OpenStreetMap (open source mapping platform) 144, 146, 147, 148, 149–54, 217
opportunities 3, 9, 13, 14, 46, 47, 90, 115, 119, 140, 172, 180–81, 183, 208, 234, 245, 301
Oslo Manual (OECD) 237
overreaction 43
oversaturation 43
overweighting/underweighting of rare events 31

Nikolas Thomopoulos, Mosche Givoni, and Piet Rietveld 9781783471294
Downloaded from PubFactory at 09/17/2023 01:00:59AM
via free access
packaging' digital developments 210
PADIS (Passenger and Airport Data Interchange Standards) 264
PATH (Partners for Advanced Transportation Technology) 162–3
‘payoff variability effect’ 30, 35, 46
PCS (Port Community System) 258, 282
PDNA (Post Disaster Needs Assessment) 147
PEOPLE (CIP Smart City project) 240
PERE (Physical Emission Rate Estimator) 163, 165, 172
‘personal information’ 212, 213, 215, 216, 218, 219–20
Personal Rapid Transit 7
personal security perceptions and evolution of ICT 115, 137–8
Mexico City study 115
analysis of perceptions 127, 131–6
app design 123, 124, 133, 136
and CETRAMs 118–22, 123–8, 130–33, 137
data collection results 125–6, 128–30
data collection process 123–5
future research areas 136
and gender 117–18, 123, 124, 125, 128–30, 132, 137
individual-related characteristics 132–3
limitations of research 133, 136
research context and questions 117–22
research design and methodology 122–7
RFID systems 119, 121, 123, 126, 130–31, 133, 137
urban context-related relationships 132
virtual topography of security perceptions 134–5
and mobility data collection 116–17, 122–3
and smartphones 115, 116–17, 122–4, 133, 136, 137–8
philosophy of technology 206, 219, 220
PleaseCycle (app) 207, 209, 212, 217
Polya, George 242
Potoglou, D. 209, 213
POVNET workshop (OECD) 140
PPPs (public–private partnerships) 12, 119
Prashker, J.N. 35, 37, 38, 40
preference-based choice 103
‘preparation cycles’ 243
prescriptive information 33–4, 40, 41–2, 46
Pridmore, J. 216
priming (in choice architecture) 45
‘PRISM’ (American National Security Agency) 213
Privacy Impact Assessment 300
privacy issues
care over location data 208–9, 221
defining privacy 214, 216, 219, 220
maintaining boundaries 215, 216
privacy paradox 209
and Smart-Way app 60, 71, 90
see also surveillance issues
process theories of behaviour 32–3
profiling 215, 216–17
Pronello, C. 56
Prospect Theory 30, 32, 36–7, 39, 41
public transport
and cycling initiatives 185
and habitual travel patterns 102–4, 106, 109
and personal security perceptions 115, 117–19, 121–37
rail network domain 230, 232–3
and real-time information 56–8, 276
and Smart-Way app see Smart-Way
and travel behaviour analysis see travel behaviour
and travel information see travel information
and walking to school initiatives 96, 97–8, 101–2
purpose limitation 212, 215, 218, 219
quality assurance 218
questionnaires (Smart-Way developmental study) 58–9, 60–63
R&D (Research and Development) 235, 237–8
RA (Risk Assessment) 147
Raiffa, H. 28
rail networks (ITS domain) 230, 232–3
Index

Rapoport, A. 42
rational choice 27–8, 46
Razo, M. 36
RDF/S (Resource Description Framework Schema) ontology design 241, 242
real-time information
and crowdsourcing 144–5
and open geospatial data 143
and public transport 56–8, 276
and Smart-Way app 56, 59, 60, 65, 73, 77, 87–9
and travel behaviour 26, 42–3, 47
Recker, W. 162
regret aversion 32, 37, 39, 41
Regret Theory 32, 37
reinforced learning 29–30, 42
Renew (data collection company) 216
Rennes 142
RescuePH (crowdsourcing platform) 144
revenue management (ITS domain) 230, 231, 233–4
RFID (radio-frequency identification) systems
and incentives to change travel behaviour 98–100, 105, 109
and personal security perceptions 119, 121, 123, 126, 130–31, 133, 137
Ricards Lodge School (Wimbledon) 98–100, 102, 107
‘right to be forgotten’ 216
Rio+20 summit 4
Rio de Janeiro 6
RISs (river information services) 270
road safety resolution (EC) 251
ROI (Return on Investment) 232
Rotterdam Vessel Traffic Services (VTS) 262–3
RPTI (Real Time Public Transport Information) 276
RRM (Random Regret-Minimization) model 37
Ruffert, E. 142–3
RUM (Random Utility Models) 28
safety issues with vehicular communication networks 172
Salomon, I. 25
SARTRE (Safe Road Trains for the Environment) project 162, 163
School and Young People Delivery Plan 96
School Travel Plan Programme 96, 107
school travel plans 95–6, 107
Schweiger, C. 77
script-based choice 103–4, 106–7
segregated cycle facilities, access to 197
Selten, R. 42, 43
Senegal 147, 151–2
Seoul 7
SFpark (parking system) 230
shared mobility 8–12
‘sharing’ 210
Shiftan, Y. 35, 38–9
ShortSeaXML (message standard for exchange of data) 273, 279
Simon, H. 29
Singapore 6, 7
Sinsai (crowdsourcing platform) 144
SMART (app) 207–8, 210
‘smart and green development’ 4–5
smart cities 5–8, 25, 298–9
smart grid (ITS domain) 230–31
smart ticketing
and integrated multimodal transport 8–9
and marketing of ICT application benefits 209–10
and shared mobility 8
smartphones
applications see apps
and data-sharing 212–13
and mobility data collection 116–17, 122–3
penetration of 1–3
and personal security perceptions 115, 116–17, 122–4, 133, 136, 137–8
and travel information 33, 47
SMART-TAXI (app) 236–7
Smart-Way (app)
and ATIS systems 56, 77, 90
company/authority profiles 72, 74–6
company/authority results 73, 78–85
data analysis method 63
and disabled users 58, 71–2, 88–9
discussion of study findings 77, 86–9
elderly users 68, 88–9
features/characteristics of app 64–5, 73, 77, 86–8, 89
focus group 58–60, 63
and GPS 55, 59–60, 73, 77–9, 81, 89
implementation of research 90–91
methodology of developmental study 58–63
privacy issues 60, 71, 90
questionnaire design 58–9, 60–63
and real-time information 56, 59, 60, 65, 73, 77, 87–9
results of data collection exercise 64–76
socio-economic characteristics of focus group 64, 66–8
testing/monitoring of 89–90
transport user results 64–72
and travel behaviour 56
travel habits/opinions of focus group 64, 69–70
usability findings 66–8, 71
and WTP 64, 70, 71, 88, 90
SMEs (small to medium enterprises) 280, 282
smooth traffic flows 165–6, 171
SMoTS (Sustainable Modes of Travel Strategies) 95
SMS (short message services) 1–2, 144
social media
and Communities of Interest 228
and crowdsourcing 144–5
and mobile phone penetration 1
and mobilization of communities 241
and Open Source Data 14
and travel information 26, 44
‘soft measures/policies’ 45–6, 96
software-as-a-service model 231
Southampton Vehicle Booking System (VBS) 272
‘Spitsmijden’ (Avoiding the Peak) study 107, 109
SPT (Strathclyde Partnership for Transport) 59, 74–5, 79, 81, 83, 85
standardized message exchange 271
‘state-of-the-art’ ITS technologies 227, 229–34, 236, 240
Stead, D. 161
Steg, L. 39
Step2Get scheme 97, 98–102, 104–9
Stockholm 181–2, 183
stop frequency measurements (GPS cycle data) 193
stop-and-start traffic cycles 165–6, 171
stress 65–6
substitution (ICT description mechanism) 25
Sugden, R. 32
SUMO (Simulation of Urban Mobility) 164
Sun, X. 162
Sunitiyoso, Y. 44
Sunstein, C. 45
Surewiecki, J. 145
surveillance issues 109, 122, 205–6, 209, 213–17
see also privacy issues
Sussman, J. 281
sustainable transport 297–303
Sustainable Urban Mobility Plans 4
Tang, L. 57, 77
Thakuriah, P. 57, 77
Tauberer, J. 146
Taxibeat (app) 208, 212, 236
TCSs (Train Control Systems) 233
‘technological fix’ 297
technological optimism bias 297–8
Telematics Programme (EC) 250
‘Telematics Systems of General Interest’ programme 251–2
Tennøy, A. 198
terminology of ICT for transport 5–8, 301, 302
TfL (Transport for London) 7, 11, 96, 97–100, 101–2, 107, 212
Thakuriah, P. 57, 77
Thaler, R. 45
The Art of Community (book) 239–40
Thessaloniki 234, 236–7
‘thinking fast and slow’ 29
threats 3, 14, 46, 90, 183, 186, 245, 302
throughput 166–7, 169, 171
TIB (Theory of Interpersonal Behaviour) 33
Tight, M. 108
time-effectiveness discourses 210, 211
Timmermans, H. 36

Nikolas Thomopoulos, Mosche Givoni, and Piet Rietveld - 9781783471294
Downloaded from PubFactory at 09/17/2023 01:00:59AM
via free access
TMB (Transports Metropolitans de Barcelona) 59, 74–5, 78, 80, 82, 84
Togo 147, 151–2
Toor, Y. 162
Torino 59, 74–6, 79, 81, 83, 85
TPB (Theory of Planned Behaviour) 33
‘traditional’ project development approach 235
traffic fatalities 4–5, 180, 270, 278
traffic flow scenarios 163–5
Traffic Information Agency Bavaria (VIB) 268
Traffic Management System (in highway sections) 275
Traffic Scotland Web Information Services 276
traffic simulations 34, 40–44, 47, 163–70, 176–8
Trainline smart card scheme 263
Transit Cooperative Research Program 89
TransitWand (app) 116, 136
Transman (Budapest Transport Private Corporation) 59, 74–5, 78, 80, 82, 84
transmission range 166–70
Transportation Research Group 57
transport projects 154
travel behaviour
and ambiguity aversion 31–2, 40, 47
and analysis by public transport operators 206–7, 211–12
and anchoring 31–2, 38
behavioural foundations 27–33
and ‘beneficial’ use of travel information 299–300
and bounded rationality 28–32, 42
and comparative ignorance 31–2, 40, 47
and competitive transport networks 34–5, 40–44
and descriptive information 30, 33, 36–40, 41, 42, 46–7
and experiential information 29–30, 33–4, 35, 38–40, 41–2, 43, 46–7
and framing 30, 36–7, 38–9, 45, 46
habitual travel patterns 102–7
and heuristics 29–32
impact of travel information on 25, 27, 44–8
incentives to change see incentives to change travel behaviour
and loss aversion 30–31, 36–7, 38–9, 45, 46
and non-competitive transport networks 34–40
and prescriptive information 33–4, 40, 41–2, 46
process theories of behaviour 32–3
and rational choice 27–8, 46
and real-time information 26, 42–3, 47
and regret aversion 32, 37, 39, 41
and reinforced learning 29–30, 42
and Smart-Way app see Smart-Way
and typology of travel information 34–5
and uncertainty 28, 36, 41, 42
and utility 27–8, 35, 36, 46
trail information
ATIS systems 56, 57, 77, 90
‘beneficial’ use of 299–300
and competitive transport networks 34–5, 40–44
and cooperative behaviour 26, 44–5, 47–8
and crowdsourcing 143–5, 156
and data-sharing 212–13, 214–15
descriptive information 30, 33, 36–40, 41, 42, 46–7
and evolution of ICT 25–6
impact on travel behaviour 25, 27, 44–8
multimodal information services 270
and non-competitive transport networks 34–40
and open geospatial data 141–3, 156
prescriptive information 33–4, 40, 41–2
and public transport 37, 39
real-time see real-time information
and smartphone apps 26, 44
Smart-Way app see Smart-Way
and social media 26, 44
and traffic simulations 34, 40–44, 47
and travel behaviour analysis 206–7, 211–12
typology of 33–5
and uncertainty 26, 36, 41, 42
Treaty of Rome (1957) 251
‘triple A’ roadmap 239–45
T-TRANS research project 227, 234, 238–9
Tudor-Locke, C. 95
Tversky, A. 30, 31, 32
Twitter 228
UDP (User Datagram Protocol) 177
UE (uncertainty effect) concept 41
UIRS (Urban Planning Institute of the Republic of Slovenia) 191
UK Border Agency 212
UML (Unified Modelling Language) Graph design 241–2
UN (United Nations) 4, 301
UNAM (National Autonomous University of Mexico) 123
uncertainty 26, 28, 36, 41, 42
UNECE (United Nations Economic Commission for Europe) 279–80
Universitat Autònoma de Barcelona 227
Urban ITS Expert Group 254
urban transport efficiency 183
investment in 303
networks 182, 199
planning 181, 190
sustainable 207
systems 94
Ushahidi (crowdsourcing platform) 144
utility 27–8, 35, 36, 46
V2R (Vehicle-to-Roadside) systems 163–4
V2V (Vehicle-to-Vehicle) systems 162–73, 176–8, 208
Valencia 59, 74–6, 78, 80, 82, 84, 258, 282
Valencia Port Community System (PCS) 258, 282
Van Amelsfort, D. 109
VBS (Vehicle Booking System) 272
vehicle platooning 163–4, 165–7, 171, 172
vehicular communication networks 161–73, 176–8
VGI (volunteered geographic information) 14, 144, 153–4, 155, 156
VHF (Very High Frequency) channel 262
VMSs (variable message signs) 26, 36, 207, 255, 266, 269, 270, 278
Von Neumann, J. 28
VTS (Vessel Traffic Services) 262–3
walking incentive schemes 94–109, 207, 300
walking route planning 190, 198, 199
Wang, Z. 162, 171
Warsaw 59, 74–6, 79, 81, 83, 85
WATERBORNE (technology platform) 252
Waygood, E. 37
Waze (app) 26, 44, 145, 208, 210, 212
Web 2.0 226, 228, 235–6
Weber, M. 32
Wiesenthal, T. 280
Wimbledon 97–8, 102
‘wisdom of the crowds’ 145
‘word of mouth’ 26
World Bank 4, 147
WTP (willingness to pay) 64, 70, 71, 88, 90
Xia, J. 146
Zeelenberg, M. 32
Zeng, H. 8
ZTM (Zarząd Transportu Miejskiego) 59, 74–5, 79, 81, 83, 85
Zurawski, N. 217