Index

Aarhus Convention 127–8, 131, 146–7, 149, 151, 162–3, 168–9
Aaron, K. 226
accounting, and impact assessments see full-cost accounting requirements for impact assessments
Adams, S. 220
Adgate, J. 58, 295
Adger, W. 301
agriculture and livestock grazing concerns, New Zealand 246–7
see also land use
air quality concerns 57, 138–9
US Clean Air Act 138, 192, 196–7, 200
see also greenhouse gas emissions, pollution
Algeria 4, 289
Allen, D. 197, 277
Alvarez, R. 196
Amass, J. 261
Amos, J. 175
Anderson, K. 281
Anderson, V. 242
Andreeva, E. 42
Argentina 4, 289
Arnstain, S. 147–9, 162
Arthur-Young, A. 249
Australia 4, 37, 55, 289
Ayres, R. 254
Banisar, D. 127, 130, 140
Barcella, M. 196
Bargh, J. 266
Barker, L. 84
Battlesfield Mesa Health Impact Assessment see health impact assessment (HIA), US
Begas, K. 184
Belarus 289
Bhatia, R. 39, 41–2
bias problem 201–6
see also regulation of shale gas production, federalism factors, US
Birnie, P. 222
Blake, M. 178
Blevins, A. 97
Boisson de Chazournes, L. 170
Bows, A. 281
Boyer, E. 204
Bradsher, K. 4
Brady, W. 144
Brand, D. 203–4
Brandt, A. 277
Brasier, K. 182
Brazil 4, 289
Breyer, S. 201
bridge fuel, natural gas as 273, 277–8
Brown, D. 271–90, 304–6
Brown, M. 269
Bruch, C. 129
Bryden, D. 158
Buanomano, D. 205
Buchele, M. 64
Budlender, D. 214
Bulgaria 289
Bullis, K. 65, 190
Burns, M. 223
Canada
Environmental Impacts of Shale Gas Extraction in Canada report 185, 211–12
environmental, social, and health impact (ESHIA) assessment 37
greenhouse gas emissions 289
Shale gas and the future of energy

low quality water sources, use of 64–5
shale gas resources 3–4
carbon, social cost of carbon (SCC) model 69–70, 72
carbon dioxide fracturing 66
carbon emissions 216, 273–4, 285
cumulative carbon dioxide emitters, global top ten 288
see also greenhouse gas emissions
Carlton, J. 53
Carson, G. 193
Chance, N. 42
Chazan, G. 4
Chevron, shale gas exploration 55, 264–5
China 3, 4, 288–9
Clark, H. 304
clean-ups, lack of funding for, New Zealand 244
see also New Zealand, sustainable management of onshore recovery of unconventional gas; pollution
Cleetus, R. 259
climate change
Intergovernmental Panel on Climate Change (IPCC) 28–9, 284–7
and shale gas see sustainable solution to climate change, shale gas as part of
see also environmental issues; greenhouse gas emissions
coal to natural gas combustion shift effects 275–6, 281–2
see also electricity; sustainable solution to climate change, shale gas as part of
Cointe, B. 279
Coleman, M. 46
collaboration
benefits, health impact assessment (HIA), US 40, 43, 50
co-operative governance mechanism, need for, South Africa 227
and locally protective tools and collaboration 103–4, 114, 116
community
Scottish Planning Policy Framework (NPF3), community consultation measures 163
UK Infrastructure Act and community compensation measures 155–7
see also national interest
community responses to local impacts, US 101–21, 299–300
American Petroleum Institute (API) 111–12
Appalachian Shale Recommended Practices Group (ASRPG) 111–13
Colorado, noise restrictions for shale gas operations 109–10
community engagement practices 110–14
consensus-building processes 114–21
consensus-building processes, interest and issues assessment 118
consensus-building processes, management process 119–20
economic development support 113
environment and health and safety protection 113, 115
land use regulation to promote community values 104–10, 116–17, 120
local government zoning regulation 103, 105–9
locally protective tools and collaboration 103–4, 114, 116
Marcellus Shale Coalition (MSC) 111–12
New York, Wallach v. Town of Dryden 110
Pennsylvania constitutional guarantees 107–8
Index

Pennsylvania Environmental Council (PEC) recommendations 115–16, 119
Pennsylvania, Environmental Rights Amendment, preservation of natural resources 106–8
Pennsylvania Oil and Gas Act 104–9, 297
Pennsylvania regulatory sanctions 108
Pennsylvania Supreme Court, Huntley & Huntley v. Borough of Oakmont 105
Pennsylvania Supreme Court, Range Resources v. Salem Township 105
Pennsylvania Supreme Court, Robinson Township v. Commonwealth of Pennsylvania 105–9
recommendations 120–21
RESOLVE involvement in consensus process 119
site-by-site permitting paradigm 115, 120–21
‘social license to operate’ 110–11
stakeholder involvement 116–19
sustainable development, fostering 102–4
transparent communication, need for 103–4, 113–14, 120
well siting permit process 115–17
compensation
Comprehensive Environmental Response Compensation, Pennsylvania 128–9
UK Infrastructure Act and community compensation measures 155–7
confidentiality 175–7
see also transparency
consensus-building processes 114–21
see also community responses to local impacts
constitutional environmental rights 17–18, 20–28, 293–9, 301–5, 307
continuous improvement principle suggestion 72
see also full-cost accounting requirements for impact assessments
Copeland, C. 200
Corburn, J. 41
corporate ‘greenwashing’ concerns 27
cost factors
cheaper natural gas prices leading to higher rates of electricity consumption of 282
consumer cost reductions 259
cost-benefit analysis, need for, South Africa 228
cost-effectiveness of energy efficiency, energy efficiency and sustainability, US 257–61, 265–6
full-cost accounting requirements see full-cost accounting requirements for impact assessments
‘funding bias’ criticisms of shale gas studies 204–5
health impact assessment (HIA), US 39–40, 50
price and non-pricing policies 269
renewable energy 258–9
Coughlin, K. 262
Craig, R. 194
Crannell, J. 144
credibility increase benefits 129–31, 140
see also public participation and sustainability, Pennsylvania
Croatia 289
cultural cognition of risk 203–5
Curley, J. 99
Dannenberg, A. 36, 40–42
Davis, C. 65, 71
Daya-Winterbottom, T. 230–50, 301–2
decision-making
business decision making 56–7, 63
‘delegated power’ and ‘citizen control’, UK 148–9
Shale gas and the future of energy

health impact assessment (HIA), US 36–7, 45–6, 50
process involvement, Pennsylvania 132, 137, 141–2
see also public participation; stakeholder participation

Dellinger, M. 128–30
Den Elzen, M. 280
Dernbach, J. 1–30, 52–3, 76, 126, 167, 192, 293–308
Detrow, S. 58, 175–7, 179
Dominiczak, P. 144
Doster, A. 95
Douglas, H. 154
Downing, Y. 230, 239, 248
Drajen, M. 68

drilling
development impact on sustainable housing in rural communities, Pennsylvania 85–8
health impact assessment (HIA), US 42–51
horizontal drilling and unregistered landowners, UK 153
Marcellus Shale Advisory Commission (MSAC) recommendations 180
Marcellus Shale Coalition (MSC) 111–12
moratorium 46–7, 242
permits 115–17, 138–40, 144, 155
public participation and sustainability, Pennsylvania 133–7
technological advances 64
see also fracturing; mining; wells

drinking water sources, New Zealand 241
see also water
Du Plessis, W. 214
Dunkley, E. 156
Durham, D. 52, 65
Dyml, A. 84, 100

economic development considerations 20–22, 84–5, 113
Edenhofer, O. 247
Efstathiou, J. 195, 204

Egypt 289
Ehrhardt-Martinez, K. 270
electricity
cold to natural gas combustion shift effects 275–6, 281–2
generation costs 258, 266
Integrated Resource Plan for
Electricity, South Africa 218
Elliott, R. 258
Ellsworth, P. 204
Ellsworth, W. 60
employment effects 85–7, 195–6, 259, 263–5
energy
mix and sustainability, South Africa 216–21, 225
regulation, federalism factors, US 191–4
energy efficiency and sustainability, US 253–70, 304–6
American Council for an
Energy-Efficient Economy (ACEEE) report 255, 258
barriers, overcoming 267–70
California Air Resources Board report 268–9
Chevron claims on shale gas 264–5
coster reductions 259
cost-effectiveness of energy efficiency 257–61
electricity generation costs 258, 266
employment effects 259, 263–5
energy efficiency as invisible resource 256–7
energy service companies (ESCOs) 254–5
greenhouse gas emissions and pollution reduction 259, 263–4
historical impact of energy efficiency 256–7
incentive realignment, need for 268
International Energy Agency (IEA) reports on energy efficiency 254–5, 257–8, 265–6
market barriers 267–9
non-energy benefits 260–61
Index

payback timescale 261
policy options 268–9
price and non-pricing policies 269
‘rebound effect’ 269–70
renewable energy costs 258–9
renewables compared to shale gas 261–4
shale gas in energy efficiency context 264–7
shale gas in energy efficiency context, cost effects 265–6
shale gas in energy efficiency context, pollution concerns 266
Engel, K. 192–3
environmental issues
Comprehensive Environmental Response Compensation, Pennsylvania 128–9
corporate ‘greenwashing’ concerns 27
degradation, and sustainable development 20–24, 26–7
Department of Environmental Affairs (DEA) sustainability mandate, South Africa 222
environmental impact assessment 38–43, 52–3
federalism factors, US 195
and health and safety protection 113, 115
internalization of external environmental and social costs, need for 57–8
Karoo geological structure and biodiversity, South Africa 220–21
national environmental standards (NES), New Zealand 232–4, 240–41, 246, 248–9
New York State Environmental Quality Review Act (SEQRA) process 46
Pennsylvania Environmental Council (PEC) recommendations 115–16, 119
Pennsylvania, Environmental Rights Amendment 106–8
Resource Management Act (RMA), New Zealand see New Zealand, sustainable management of onshore recovery of unconventional gas, Resource Management Act (RMA)
Strategic Environmental Assessment (SEA), South Africa 212
sustainable housing in rural communities, Pennsylvania 84
transparency relevance to sustainability, Pennsylvania 167–72
US EPA’s Study of Hydraulic Fracturing . . . 72–3
see also climate change; greenhouse gas emissions; pollution
Epstein, P. 200
Esch, M. 46
Eshelman, R. 275
ethical issues, sustainable solution to climate change 283–90
EU cumulative carbon dioxide emissions 288
energy savings in buildings 259–61
public concern on shale gas development 54–5
REACH regulation 170–71
Seveso Directives 169
see also individual countries
Ewing, I. 246
expert information, biased assimilation of 203–5
fair share, government’s fair share of safe global emissions 286–7
see also greenhouse gas emissions
Farley, H. 253
Feree, P. 196
Ferguson, M. 266
Feris, L. 214
Ferrar, K. 179, 182
flowback fluids, chemical identity protection 177–8, 185
see also transparency relevance to sustainability, Pennsylvania
Fountain, H. 195
fracturing
carbon dioxide 66
toxic additives 65
and wastewater 52, 195
see also drilling; technology advances
France 260, 288–9
Freedman, A. 285
Frewer, L. 146–8
Freyman, M. 58, 60
Frieden, T. 170
full-cost accounting requirements for impact assessments 52–77, 294–6
air quality concerns 57
alternative technologies, consideration of 71–2
analytical tools to estimate costs and impacts of regulations 69–70
best management practices 65
business case for sustainability, lack of 63
carbon dioxide fracturing, technological challenges 66
continuous improvement principle suggestion 72
critical water-related risk in hydraulic fracturing 60–62, 66, 71
disclosure requirements 75
environmental and health risks 52–3
forensic accounting techniques 71
fracturing technologies minimizing water use, risk assessment 65–6
full-cost accounting system construction 70–74
implementation options 74–7
integration into business decision making system 56–7
internalization of external environmental and social costs, need for 57–8
International Energy Agency (IEA)
‘Golden Rules’ for shale gas development 73–4
KPMG, Watered-down assessment 60–62, 66, 71
natural resource damage assessment techniques 71
Pennsylvania experience, acid mine drainage 64
Pennsylvania experience, learning from 58–62
Pennsylvania experience, learning from, University of Pittsburgh’s Shale Gas Roundtable involvement 59–60, 67, 69
Pennsylvania experience, US Geological Survey into landscape consequences of natural gas extraction 68
profitability assessment 63
public concern on shale gas development 53, 55–6
recycling and water treatment technologies 64
reflexive regulation 76
regulatory progress, US 67–70, 72–3, 76–7
shale gas accessibility 54
shale gas development decision making and sustainability 56–8
shale gas resource estimates 53–4, 64
social cost of carbon (SCC) model 69–70, 72
stakeholder involvement effects 75–6
technology innovation concerns and possibilities 63–5, 71–2
toxic fracturing additives, use reduction measures 65
US EPA’s Study of Hydraulic Fracturing . . . 72–3
US experience as comparison 54–5
water quality concerns 57–8
water use and wastewater 52
well field pro forma financial statement 63
‘funding bias’ criticisms of shale gas studies 204–5
see also cost factors
Funke, N. 219
future development and sustainability 140–42, 148–9, 246–50, 293–308
future emissions, projection of 277–8, 280
see also greenhouse gas emissions
Index

Galbraith, K. 65, 194
Garcia, R. 95
Garrett, R. 189
Geller, H. 269
Gerland, P. 22
Germany 282–3, 288–9
GHG see greenhouse gas emissions
Gibson, R. 84
Gilliland, D. 64
Glazewski, J. 209–29, 301–3
Goldman, G. 178
Goldman, L. 295
Goldstein, B. 165–86, 297–8
Gottlieb, L. 39–40, 48
government transparency issues, UK 156–7, 160–62
government’s fair share of safe global emissions 286–7
Grear, A. 155
greenhouse gas emissions
atmospheric concentration goal and ethical issues 284
carbon emissions 216, 273–4, 285, 288
energy efficiency and sustainability, US 259, 263–4
future emissions, projection of 277–8, 280
government’s fair share of safe global emissions 286–7
methane emissions 196–7, 276–8, 281
reduction commitment, US 275–6
responsibility allocations 286–8
see also climate change; environmental issues; pollution
Gross, S. 204
groundwater contamination concerns, New Zealand 230, 248
see also water
Grundy, K. 235
Gruver, M. 57

Halper, E. 53
Hamburg, M. 169
Hamilton, G. 64
Hand, M. 262
Hansen, E. 64

Hansen, J. 29
Hanson, D. 269
Hardin, G. 57
Harris, P. 38, 40–42
Harris-Roxas, B. 34
Havemann, L. 211
Hayes, D. 195
health
Pennsylvania Department of Health (PADOH), health impact exclusion 180–81
public concerns and lack of trust 181–5
risks, full-cost accounting requirements for impact assessments 52–3
health impact assessment (HIA), US 33–51, 294–6
assessment stage 36
Battlement Mesa Health Impact Assessment 43–6
Battlement Mesa Health Impact Assessment, political conflicts 45
Battlement Mesa Health Impact Assessment, public concern issues 44–5
Battlement Mesa Health Impact Assessment, stakeholder involvement 44–5
benefits of 33–4
collaboration benefits 40, 43, 50
cost factors 39–40, 50
decision-making phase 36–7, 45–6, 50
definitions 35, 49
Environmental Health Impact Assessment 38–9
environmental impact assessment (EIA), lack of health focus 41
environmental, social, and health impact (ESHIA) assessments 37–8
evolution, and sustainability link 37–9
growth in US 39–40
monitoring phase 37
and National Environmental Policy Act (NEPA) 37–8, 48
and natural gas drillings 42–6
and natural gas drillings, challenges 48–51
and natural gas drillings, legislative mandates 46–8
New York regulation of water usage 48
New York State Assembly moratorium on gas drilling 46–7
New York State Department of Health ‘public health review’ of shale gas development 47
New York State Environmental Quality Review Act (SEQRA) process 46
North Slope Borough (Alaska) HIA 42–3
North Slope Borough (Alaska) HIA, environmental impact assessment (EIA) concerns 43
Pennsylvania regulations for water use and water quality 48
political factors 45, 49
prediction validity concerns 49
process stages 36–7, 42, 44, 50
scoping phase 36, 42, 50
screening stage 36, 50
Senate Bill 2697 and Environmental Conservation Law 47
stakeholder involvement 44–5, 50
state regulations and trends dealing with water use and quality 48
training concerns 50
versus environmental impact assessment (EIA) 40–42
Hoffman, A. and M. 221
Holden, M. 175
Hooper, D. 21
horizontal drilling and unregistered landowners, UK 153
see also drilling
housing in rural communities see sustainable housing in rural communities, Pennsylvania
Howarth, R. 196–7
Human Rights Act considerations, UK 155
Hungary 289
see also fracturing
impact assessments
full cost accounting see full-cost accounting requirements for impact assessments
health impact see health impact assessment (HIA), US
Impact Fee, Pennsylvania 180
incentives 150, 159, 200, 268
India 288–9
information
access, Right to Know Law, Pennsylvania 136
availability, stakeholder participation, UK 162–3
expert information, biased assimilation of 203–5
knowledge base expansion benefits 129–30, 140
Pennsylvania Act 13, failure to provide pertinent information 178–9, 184–5
Infrastructure Act, UK 144–5, 150–57, 161–2
Infrastructure Development Act, South Africa 225–6
infrastructure requirements, sustainable housing in rural communities, Pennsylvania 95
innovation 63–5, 71–2, 179
interest group politics, effects of 193–4
see also stakeholders
Intergovernmental Panel on Climate Change (IPCC) 28–9, 284–7
see also climate change
see also energy
International Union for the Conservation of Nature and Natural Resources (IUCN) 25
Shale gas and the future of energy

Merrill, T. 76, 148
methane emissions 196–7, 276–8, 281
see also greenhouse gas emissions
Mexico 4, 289
Miers, D. 151
Miller, S. 197, 277
Mindell, J. 34, 38
Minerals Planning Authority (MPA) responsibilities, stakeholder participation, UK 158–9
mining
acid mine drainage 64
Mines (Working Facilities and Support) Act, UK 153–5
Pennsylvania, Surface Mining and Conservation Act (SMCA) 138–9
see also drilling; wells
Moran, J. 55
moratorium 46–7, 55, 210–11, 226–7, 242
Morgan, J. 143–64, 297–8
Morgan, R. 38, 41
Morrissey, J. 48
Mors, E. ter 156
Muller, N. 199–200
Murtishaw, S. 269
Myers, N. 220

national interest
assessment, federalism factors, US 199–201
national policy statements (NPS), New Zealand 232–3, 240, 247–9
stakeholder participation, UK 154
see also community; individual countries
natural gas as bridge fuel 273, 277–8
neighborhood character impacts 195–6
see also regulation of shale gas production, federalism factors, US
New Zealand, sustainable management of onshore recovery of unconventional gas 230–50, 301–2
Canterbury region, moratorium request 242

clean-ups, lack of funding for 244
climate change and greenhouse gas emissions 247–8
drinking water sources, effects on 241
East Coast basin, well drilling as discretionary activity 243–4
Fonterra milk production concerns 246
future sustainability 246–50
Greenpeace of New Zealand Inc v. Environmental Protection Authority 230
groundwater contamination concerns 230, 248
livestock grazing on landfarmed sites 246–7
local authority plans 241–6
McKnight v. NZ Biogas Industries 239
Manawatu-Wanganui region, well drilling as controlled activity 243–4
national environmental standards (NES) 232–4, 240–41, 246, 248–9
national policy statements (NPS) 232–3, 240, 247–9
New Zealand Rail v. Marlborough District Council 236
North Shore City Council v. Auckland Regional Council 235
Parliamentary Commissioner for the Environment (PCE) 230, 241
Parliamentary Commissioner for the Environment (PCE), reform recommendations 246–7
Ports of Auckland Ltd v. Auckland City Council 249
public liability insurance, lack of 244
public participation concerns 246
regional and district plans 233
Rylands v. Fletcher 248
seismic events 248
Shirley Primary School v. Telecom Mobil Communications 239
site monitoring, lack of provision 244
spills and leaks, dealing with 244–5
Taranaki region focus 231, 241
Taranaki region, unconventional gas recovery as permitted activity 241–4
Taranaki region, waste disposal 245
*Trio Holdings Ltd v. Marlborough District Council* 235–6, 239
waste disposal 245–6
*Watercare Services Ltd v. Minihinnick* 235
well design and construction 243–4
well site location and water contamination 242–3
New Zealand, sustainable management of onshore recovery of unconventional gas, Resource Management Act (RMA) and environmental law 231–40
land use activities and district plans 237–8
reform recommendations 247–8
resource consent, civil and criminal enforcement 239–40, 248–9
resource consent and discharge of contaminants into environment (regional plan) 238–40, 242, 247–8
spills and leaks 245
sustainable management, giving effect to 237–40
sustainable management meaning and effect 234–7
waste disposal 245–6
Newhook, L. 249
Nickerson, R. 202–3, 206
Niemann, S. 269
Nigeria 226
Nolan, D. 249
Nolon, S. 116–17
non-energy benefits 260–61
*see also* energy efficiency and sustainability, US
non-fossil fuel generating facilities, need for 275, 278–83, 289–90
Oates, W. 192
Olson, M. 193–4
Orford, A. 197
Page, A. 151
Pardy, B. 235
Parry, J. 49
Pasquier, M. 172
payback timescale 261
*see also* energy efficiency and sustainability, US
Peel, J. 222–3
Pennsylvania *see* US, Pennsylvania
Perera, A. 70
Perkins, D. 202
permits 115–17, 138–40, 144, 155
*see also* drilling
Perry, S. 182
Petrescu, G. 56
Petroleum Exploration and Development Licenses (PEDLs), UK 152–4, 156
Petron, G. 196–7
Phillips, S. 53, 64
Pidcock, R. 285
Pitz, G. 202
Poland 289
policies
energy efficiency and sustainability, US 268–9
national policy statements (NPS), New Zealand 232–3, 240, 247–9
*see also* legislation; regulation of shale gas production, federalism factors, US
political factors, health impact assessment (HIA), US 45, 49
pollution
air quality concerns 57, 138–9
polluter-pays principle 294
shale gas in energy efficiency context 266
spills and leaks, dealing with, New Zealand 244–5
US Clean Air Act 138, 192, 196–7, 200
US, Pennsylvania Air Pollution Control Act (APCA) 138–9
and water supply, South Africa 219–20, 222–5

see also environmental issues; greenhouse gas emissions
population growth effects 22
Portugal 289
poverty concerns 22–3
precautionary principle and participatory democracy 170–71
Prinn, R. 280
property prices, impact on 156–7
see also stakeholder participation, UK; sustainable housing in rural communities, Pennsylvania
public concerns
as barrier, 145, 147–9, 151
confidential business information (CBI), and concern over secrecy 175
fear factors 205–6
full-cost accounting requirements for impact assessments 53, 55–6
health impact assessments see health impact assessment (HIA), US
health impact and lack of trust 181–5
public housing units and Faircloth Limit 89–90
public liability insurance, lack of, New Zealand 244
public participation and sustainability, Pennsylvania 125–42, 297–8
Aarhus Convention and procedural environmental rights 127–8, 131
appeal time frames 136–7
Clean Water Act and public participation 128
comparison with other permit regimes 138–40
Comprehensive Environmental Response Compensation, and Liability Act (CERCLA) and public participation 128–9
credibility increase benefits 129–31, 140
decision-making process involvement 132, 137, 141–2
future development lessons 140–42
gas permitting regime, differences from 138–40
General Principles of Sustainable Public Participation 131–3
knowledge base expansion benefits 129–30, 140
Marcellus shale gas drilling 133–7
National Environmental Policy Act (NEPA), Environmental Impact Statement (EIS) requirement 128
participation opportunity provision 131–2, 137
Pennsylvania, Air Pollution Control Act (APCA) 138–9
Pennsylvania Clean Streams Law 138
Pennsylvania Department of Environmental Protection (DEP) permit applications 133–7
Pennsylvania, Oil and Gas Act 104–9, 297
Pennsylvania Right to Know Law and information access 136
Pennsylvania, Surface Mining and Conservation Act (SMCA) 138–9
public comment limitations and restrictions 134–9, 141
public participation process 126–33
transparency benefits 130–32, 140
see also stakeholder participation, UK
Puko, T. 69
Quigley, J. 52–77, 294–6
Rabe, B. 192
Rabeler, K. 166
race-to-the-bottom concerns and under-regulation 192–3, 198
see also regulation of shale gas production, federalism
factors, US
radioactivity 195
Rao, V. 7
Index

Read, A. 95
'rebound effect' 269–70
see also energy efficiency and sustainability, US
recycling and water treatment technologies 64
see also water
Reed, M. 146–7
regulation of shale gas production, federalism factors, US 189–208, 301–3
bias problem 201–6
biased assimilation of expert information 203–5
biased assimilation and framing effects 205
Clean Air Act and air pollution over state boundaries 192, 196–7, 200
Clean Water Act and disposal of water-borne wastes 191
comprehensive federal regulation, case for 194–201
confirmation bias 202–3, 207
cultural cognition of risk 203–5
energy regulation 191–4
environmental impacts 195
fear factors 205–6
‘funding bias’ criticisms of shale gas studies 204–5
interest group politics, effects of 193–4
market incentives, success of 200
methane emissions 196–7
national interest assessment 199–201
neighborhood character impacts 195–6
policymakers, advice to 206–7
politicians, external pressures on 207
risk assessment 201–7
scientific literature, importance of focus on 206–7
spillover effects 194–7
under-regulation and ‘race to the bottom’ concerns 192–3, 198
see also legislation; policies
regulatory progress 67–70, 72–3, 76–7
see also full-cost accounting requirements for impact assessments
Reibstein, D. 266
renewable energy 218–19, 258–9, 261–4
Renn, O. 170
RESOLVE involvement in consensus process 119
see also community responses to local impacts
resource estimates 53–4, 64
see also full-cost accounting requirements for impact assessments
Retief, F. 224
Revesz, R. 193
Richardson, N. 191, 198
Rifkin, J. 260
Riis-Christianson, M. 64–5
Rio Declaration 23–4, 27, 57, 126–7, 131, 140, 146, 168, 294, 304, 306
risk assessment 65–6, 201–7
Rive, V. 250
Rockström, J. 21
Rogers, W. 144
Romania 55, 289
Romm, J. 278
Ross, A. 146, 157
Rowe, G. 146–8
Ruppel, C. 60
rural communities’ housing see sustainable housing in rural communities, Pennsylvania
Russia 4, 288–9
Sachdeva, S. 242
Sadler, B. 224
Salkin, P. 33–51, 294–6
Sandler, T. 194
Sandman, P. 183
Sands, P. 222–3
Sarnoff, J. 193
Sathaye, J. 269
Schaefer, K. 62
Scheyder, E. 66
Scheyder, E. 66
Schor, D. 76, 148
Schumacher, J. 48

John C. Dernbach and James R. May - 9781783476152
Downloaded from https://www.elgaronline.com/ at 10/19/2023 02:29:31PM
via free access
scientific literature, importance of focus on 206–7
seismic events 195, 248
Sharfstein, J. 169
Shasteen, A. 175
site monitoring, lack of provision, New Zealand 244
site-by-site permitting paradigm 115, 120–21
see also community responses to local impacts
Skowno, A. 220–21
‘slickwater’ 2
see also water
Slovic, P. 148, 183
Smith, C. 175
Smith, D. 65
Smith, L. 159
Smith, P. 196
Smith, Z. 253
social cost of carbon (SCC) model 69–70, 72
social costs 57–8, 181–3, 186
social equity issues 84–5
‘social license to operate’ 110–11
Soraghan, M. 205
South Africa, proposed shale gas extraction 4, 209–29, 289, 301–3
BP v. MEC for Agriculture, Conservation, Environment and Land Affairs 213–14
co-operative governance mechanism, need for 227
Constitutional Court’s neglect of justifiable economic and social development, criticism of 214–15
Constitution’s ‘Co-operative Government’ requirements 221
cost-benefit analysis, need for 228
Council for Scientific and Industrial Research (CSIR), Strategic Environmental Assessment (SEA) 212
Department of Energy (DoE) Integrated Energy Plan 217–18, 225
Department of Environmental Affairs (DEA) sustainability mandate 222
Department of Mineral Resources (DMR), Environmental Assessment (EA) process 223–4
Department of Mineral Resources (DMR), Proposed Technical Regulations 211
Department of Science and Technology (DST), Academy of Science of South Africa (ASSAf) study 211–12, 227
Director: Mineral Development, Gauteng Region v. Save the Vaal Environment 213
energy consumption by energy type 217
energy mix and sustainability 216–21, 225
energy-intensive industries and carbon emissions 216
environmental right 212–13
exploration phase 210, 219, 228–9
Fuel Retailers Association of Southern Africa v. Director-General 214, 222–3
Gini co-efficient (U.N. inequality index) 214–15
Havemann Report 211
Infrastructure Development Act 225–6
Integrated Resource Plan for Electricity 218
Karoo Basin report 211
Karoo geological structure and biodiversity 220–21
legislative and governance framework for sustainable energy 221–6
Minerals and Petroleum Resources Development Act (MPRDA) 210, 221–3
moratorium on issuing of shale gas licenses 55, 210–11, 226–7
National Energy Act 217–18, 225
<table>
<thead>
<tr>
<th>National Environmental Management Act (NEMA) and sustainability</th>
<th>222–4, 226</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Framework for Sustainable Development</td>
<td>219</td>
</tr>
<tr>
<td>recommendations 226–8</td>
<td></td>
</tr>
<tr>
<td>Right of Access to Information</td>
<td>215</td>
</tr>
<tr>
<td>Right to Just Administrative Action</td>
<td>215</td>
</tr>
<tr>
<td>Right to Sufficient Water</td>
<td>215</td>
</tr>
<tr>
<td>Strategic Environmental Assessment (SEA)</td>
<td>223–4, 227</td>
</tr>
<tr>
<td>sustainability as Constitutional requirement for decision making</td>
<td>212–15</td>
</tr>
<tr>
<td>‘unproved technically recoverable resource’ (TRR) estimate</td>
<td>216–17, 226</td>
</tr>
<tr>
<td>Water Act and water licensing regime</td>
<td>224–5</td>
</tr>
<tr>
<td>water supply and pollution concerns</td>
<td>219–20, 222–5</td>
</tr>
<tr>
<td>White Paper on Energy Policy</td>
<td>218</td>
</tr>
<tr>
<td>White Paper on Renewable Energy</td>
<td>218–19</td>
</tr>
<tr>
<td>South Korea</td>
<td>289</td>
</tr>
<tr>
<td>Spain</td>
<td>289</td>
</tr>
<tr>
<td>Spence, D.</td>
<td>189–208, 301–3</td>
</tr>
<tr>
<td>Spickett, J.</td>
<td>42</td>
</tr>
<tr>
<td>spillover effects</td>
<td>194–7</td>
</tr>
<tr>
<td>see also regulation of shale gas production, federalism factors, US</td>
<td></td>
</tr>
<tr>
<td>spills and leaks, dealing with, New Zealand</td>
<td>244–5</td>
</tr>
<tr>
<td>see also pollution</td>
<td></td>
</tr>
<tr>
<td>Spotts, P.</td>
<td>195</td>
</tr>
<tr>
<td>Stafford, P.</td>
<td>160–61</td>
</tr>
<tr>
<td>stakeholder involvement</td>
<td>44–5, 50, 75–6, 116–19, 193–4</td>
</tr>
<tr>
<td>stakeholder participation, UK</td>
<td>143–64, 297–8</td>
</tr>
<tr>
<td>Aarhus Convention adoption effects</td>
<td>146–7, 149, 151, 162–3</td>
</tr>
<tr>
<td>debate opportunities, need for 162–3 decision making, ‘delegated power’ and ‘citizen control’</td>
<td>148–9</td>
</tr>
<tr>
<td>deep-level land use</td>
<td>151–2, 154, 156–7, 160</td>
</tr>
<tr>
<td>Department of Communities and Local Government (DCLG) consultation criticism</td>
<td>161</td>
</tr>
<tr>
<td>Human Rights Act considerations</td>
<td>155 information availability requirements</td>
</tr>
<tr>
<td>Infrastructure Act</td>
<td>144–5, 150, 161–2</td>
</tr>
<tr>
<td>Infrastructure Act, access rights</td>
<td>151–5</td>
</tr>
<tr>
<td>Infrastructure Act, community compensation measures</td>
<td>155–7 land-use planning 157–62 land-use planning, called-in applications</td>
</tr>
<tr>
<td>long-term effects, concerns over</td>
<td>148–9</td>
</tr>
<tr>
<td>Minerals Planning Authority (MPA) responsibilities</td>
<td>158–9</td>
</tr>
<tr>
<td>‘national interest’ considerations</td>
<td>154 permit requirements</td>
</tr>
<tr>
<td>Petroleum Act</td>
<td>152, 154 Petroleum Exploration and Development Licenses (PEDLs)</td>
</tr>
</tbody>
</table>
sustainable development processes 145–9
tax regime and incentives 150, 159
Town and Country Planning Act 158
Town and Country Planning Act, notification responsibilities 160–62
trespass law 144, 150, 153, 157
US comparison and differences 144, 152, 155
see also public participation
Stallworthy, M. 146
Stares, D. 101–21, 299–300
Steinemann, A. 49
Steinzor, N. 182
Stevens, A. 49
Stewart, R. 192
Steyl, G. 220
Stringer, L. 147–8
sustainability
business case, lack of 63
development processes, UK 145–9
ergie mix and sustainability, South Africa 216–21
future of 140–42, 148–9, 246–50, 293–308
and health impact assessment 37–9
National Environmental Management Act (NEMA), South Africa 222–4, 226
National Framework for Sustainable Development, South Africa 219
New Zealand see New Zealand, sustainable management of onshore recovery of unconventional gas
and public participation see public participation and sustainability, Pennsylvania
and shale gas development decision making 56–8
transparency relevance see transparency relevance to sustainability, Pennsylvania
sustainable development 4–5, 17–30
challenges 27
corporate ‘greenwashing’ concerns 27
development and/or environment focus 26–7
and economic growth 20, 22
ecosystems research 20–22
environmental degradation 20–24, 26–7
environmental issues and greenhouse gas emissions 18–19, 22–3, 28
greenhouse gas emissions calculation and carbon budget 28–9
human well-being concerns 20, 25
integrated decision making as key action principle 24
‘planetary boundaries’ 21
population growth effects 22
poverty concerns 22–3
resource consumption effects 21–2
shale gas development benefits 22
shale gas development concerns 22–3
sustainable development definition and objectives 19–20
sustainable development overview 19–27
transition acceleration urgency 28–30
sustainable housing in rural communities, Pennsylvania 81–100, 299–300
and commuting distances 95
developer capacity, lack of 92
economic development considerations 84–5
effects of increased housing demand 82–5
employee waves and differing housing needs 86–7
environmental impacts 84
financial crisis and housing bubble collapse 91
flexible response, need for 96
gas industry employment requirements 85
homelessness (couch surfing) issues 89
hotel room shortage 91
housing impact responses 92–4
housing quality issues and rent rises 88–9
infrastructure requirements 95
interconnected housing markets 88–92
Marcellus development impact 85–8
oversupplied housing market effects 85
oversupply risks 96
Pennsylvania Act 13 impact fee 92–5, 98–9
Pennsylvania Housing Affordability and Rehabilitation Enhancement Fund (PHARE) 92–3
pre-existing housing needs, solutions from 98
public housing units and Faircloth Limit 89–90
recommendations 94–9
rental price rises 87–90
residential facilities (man camps) 97
senior/disabled housing shortage 90–91, 97
single family housing 91–2
social equity issues 84–5
subsidized housing 89–90
sustainability three pillars 83–5
temporary housing considerations 96–7
US Housing Act, subsidized rent payments 89–90
Williamsport Housing Strategy 94
young professional housing needs 98
sustainable solution to climate change, shale gas as part of 271–90, 304–6
atmospheric greenhouse gas concentration goal and ethical issues 284
atmospheric stabilization goal, global benefits 284–5, 287
carbon dioxide emissions from natural gas, oil, and coal combustion 273–4
cheaper natural gas prices leading to higher rates of consumption of electricity 282
climatic change problem, understanding extent of 278–9
‘climate sensitivity’ problems 280–81
coal to natural gas combustion shift effects 275–6, 281–2
cumulative carbon dioxide emitters, global top ten 288
ethical analysis 283–90
greenhouse gas emissions, a government’s fair share of safe global emissions 286–7
greenhouse gas emissions in Pennsylvania 272, 274
greenhouse gas emissions, projection of future 277–8, 280
greenhouse gas emissions reduction commitment, US 275–6
greenhouse gas emissions, responsibility allocations and distributive justice 287–8
Intergovernmental Panel on Climate Change (IPCC), carbon emissions budget 285
Intergovernmental Panel on Climate Change (IPCC), on ethical concepts 284
Intergovernmental Panel on Climate Change (IPCC), sustainable development and equity 286–7
methane gas decay rate 278
methane gas leakage rates, concerns over 276–8, 281
natural gas as bridge fuel 273, 277–8
non-fossil fuel generating facilities, need for 275, 278–83, 289–90
Pennsylvania climate change action plan 274–5
President’s Climate Action Plan 275–6
United Nations Framework Convention on Climate Change (UNFCCC) and 2°C warming limit 279–80, 283, 285–6
US National Academy of Sciences, America’s Climate Choices 284
Switzerland 289
tax incentives 150, 159
technology advances 63–5, 71–2, 179
see also fracturing
Thompson, C. 184
Tollefson, J. 29, 197, 277
Townsend, M. 149
toxic fracturing additives, use reduction measures 65
trade secret designation for
hydrofracturing agents 172–8
see also transparency relevance to sustainability, Pennsylvania transition acceleration urgency 28–30
transparency benefits, and public participation 130–32, 140
government transparency issues, UK 156–7, 160–62
transparent communication, need for, community responses to local impacts 103–4, 113–14, 120
transparency relevance to sustainability, Pennsylvania 165–86, 297–8
Colorado, confidential information access contrast 175
confidential business information (CBI), and public concern over secrecy 175
Deepwater Horizon disaster, and dispersant use 176
doctor’s confidentiality provision challenge 176–7
environmental management 167–72
flowback fluids, chemical identity protection 177–8, 185
FracFocus (national hydraulic fracturing chemical registry) 175
Impact Fee 180
Marcellus Shale Advisory Commission (MSAC) recommendations 180
Oil and Gas Industry Guidance on Voluntary Sustainability Reporting 171–2
Pennsylvania Act 13, failure to provide pertinent information 178–9, 184–5
Pennsylvania Act 13, responsibility to obtain pertinent information 179–81
Pennsylvania Act 13, transparency limitations 172–81, 184–5
Pennsylvania Department of Health (PADOH), health impact exclusion 180–81
precautionary principle and participatory democracy 170–71
psychosocial stress factors 181–3, 186
public health impact and lack of trust 181–5
public involvement, importance of 167–8, 185
recommendations 184–6
Robinson Twp v. Commonwealth of Pennsylvania 166, 176–7, 181
shale gas development evolution 183–4
state constitution violation claim 181
technology improvements, effects of 179
trade secret designation for hydrofracturing agents 172–8
US Center for Sustainable Shale Development 172
US Emergency Planning and Community Right-to-Know Act (EPCRA), trade secrets disclosure 174, 176
US Environmental Protection Agency (EPA), declassification of CBI designations 176
US Environmental Protection Agency (EPA), mission statement 169
US Food and Drug Administration (FDA), transparency to public health 169
US Occupational Safety and Health Act, toxic substance information disclosure 174
US Toxic Substances Control Act (TSCA), trade secret disclosures 176
US worker right-to-know laws 170
trespass law, UK 144, 150, 153, 157
Turkey 289
Ubinger, J. 101–21, 299–300
UK
### Index

| Berkeley v. Sec'y of State for the Env't | United Nations Conference on Sustainable Development 18, 303–4 |
| Bocardo v. Star Energy UK Onshore Ltd 153 | United Nations Environment Program, on ecosystems 20 |
| BP Petroleum Devs Ltd v. Ryder 155 | United Nations Framework Convention on Climate Change (UNFCCC) 28, 306 |
| cumulative carbon dioxide emissions 288 | and 2°C warming limit 279–80, 283, 285–6 |
| Department of Communities and Local Government (DCLG) consultation criticism 161 | United Nations Global Environmental Compact 171 |
| greenhouse gas emissions 289 | Upton, S. 235 |
| Infrastructure Act 144–5, 150–57, 161–2 | US |
| Nationally Significant Infrastructure Projects regime 158 | American Petroleum Institute (API) 111–12 |
| Petroleum Act 152, 154 | Appalachian Shale Recommended Practices Group (ASRPG) 111–13 |
| Petroleum Exploration and Development Licenses (PEDLs) 152–4, 156 | Atomic Energy Act and nuclear energy regulation 193 |
| Scottish Planning Policy Framework (NPF3), community consultation measures 163 | California Air Resources Board report 268–9 |
| stakeholder participation see stakeholder participation, UK | Canterbury v. Spence 184 |
| Town and Country Planning Act 158 trespass law 144, 150, 153, 157 | Center for Sustainable Shale Development 26, 172 |
| Ukraine 288 | Clean Air Act 138, 192, 196–7, 200 |
| unconventional shale gas development 1–4 | Clean Water Act 128, 138–9, 191 |
| under-regulation and ‘race to the bottom’ concerns 192–3, 198 see also regulation of shale gas production, federalism factors, US | Colorado, noise restrictions for shale gas operations 109–10 |
| community responses to local impacts see community responses to local impacts, US cumulative carbon dioxide emissions 288–9 | Deepwater Horizon disaster, and dispersant use 176 |
| Unger, D. 54 | Emergency Planning and Community Right-to-Know Act (EPCRA) 174, 176 |
energy efficiency and sustainability

see energy efficiency and sustainability, US
Energy Policy Act 144
Environmental Protection Agency (EPA) 72–3, 169, 176
federalism factors see regulation of shale gas production, federalism factors, US
Food and Drug Administration (FDA) 169
FracFocus (national hydraulic fracturing chemical registry) 175
gas pipeline infrastructure 3
Geological Survey into landscape consequences of natural gas extraction 68
greenhouse gas emissions 275–6, 289
health impact assessment see health impact assessment (HIA), US
Housing Act 89–90
low quality water sources, use of 64–5
Marcellus Shale Advisory Commission (MSAC) recommendations 180
Marcellus Shale Coalition (MSC) 111–12
National Academy of Sciences, America’s Climate Choices 284
National Environmental Policy Act (NEPA) 37–8, 48, 128, 294
New York regulation of water usage 48
New York State Assembly moratorium on gas drilling 46–7
New York, Wallach v. Town of Dryden 110
North Slope Borough (Alaska) HIA 42–3
Occupational Safety and Health Act 174
President’s Climate Action Plan 275–6
property rights to gas reserves 3
regulatory progress 67–70, 72–3, 76–7

Resource Conservation and Recovery Act 191
Safe Drinking Water Act 144, 191, 199
Senate Bill 2697 and Environmental Conservation Law 47
shale gas as percentage of gas production 3
Surface Mining Control and Reclamation Act 138, 199
technically recoverable shale gas resources 4
Texas, Barnett shale play 2
Toxic Substances Control Act (TSCA) 176
UK comparison and differences, stakeholder participation 144, 152, 155
worker right-to-know laws 170
US, Pennsylvania
acid mine drainage 64
Air Pollution Control Act (APCA) 138–9
Clean Streams Law 138
climate change action plan 274–5
constitutional guarantees 107–8
Department of Environmental Protection (DEP) permit applications 133–7
Environmental Rights Amendment, preservation of natural resources 106–8
greenhouse gas emissions 272, 274
Oil and Gas Act 104–9, 297
Pennsylvania Act 13 impact fee 92–5, 98–9
Pennsylvania Environmental Council (PEC) recommendations 115–16, 119
Pennsylvania experience, learning from 58–62, 67, 69
Pennsylvania Housing Affordability and Rehabilitation Enhancement Fund (PHARE) 92–3
public participation see public participation and sustainability, Pennsylvania
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>regulations for water use and water quality 48</td>
</tr>
<tr>
<td>regulatory sanctions 108</td>
</tr>
<tr>
<td>Right to Know Law 136</td>
</tr>
<tr>
<td>Solid Waste Management Act (SWMA) 138–9</td>
</tr>
<tr>
<td>Supreme Court, Huntley &amp; Huntley v. Borough Council of Borough of Oakmont 105</td>
</tr>
<tr>
<td>Supreme Court, Range Resources v. Salem Township 105</td>
</tr>
<tr>
<td>Supreme Court, Robinson Township v. Commonwealth of Pennsylvania 105–9</td>
</tr>
<tr>
<td>Surface Mining and Conservation Act (SMCA) 138–9</td>
</tr>
<tr>
<td>sustainable housing in rural communities see sustainable housing in rural communities, Pennsylvania</td>
</tr>
<tr>
<td>transparency relevance to sustainability see transparency relevance to sustainability, Pennsylvania</td>
</tr>
<tr>
<td>wellheads, rise in number of 3</td>
</tr>
<tr>
<td>Van Tonder, G. 220</td>
</tr>
<tr>
<td>VanBriesen, J. 178–9</td>
</tr>
<tr>
<td>Veerman, J. 49</td>
</tr>
<tr>
<td>Villeneuve, J. 172</td>
</tr>
<tr>
<td>Viñuales, J. 27–8</td>
</tr>
<tr>
<td>Volcovici, V. 273, 276</td>
</tr>
<tr>
<td>Wachinger, G. 182–3</td>
</tr>
<tr>
<td>Wald, M. 200</td>
</tr>
<tr>
<td>Walker, J. 193</td>
</tr>
<tr>
<td>Walter, S. 248</td>
</tr>
<tr>
<td>Wang, Z. 3</td>
</tr>
<tr>
<td>Ward, P. 64</td>
</tr>
<tr>
<td>Warr, B. 254</td>
</tr>
<tr>
<td>Wasilewski, P. 74</td>
</tr>
<tr>
<td>waste disposal 138–9, 245–6</td>
</tr>
<tr>
<td>water drinking water sources, New Zealand 241</td>
</tr>
<tr>
<td>fracturing technologies minimizing water use, risk assessment 65–6</td>
</tr>
<tr>
<td>fracturing and wastewater 52, 195</td>
</tr>
<tr>
<td>groundwater contamination concerns, New Zealand 230, 248</td>
</tr>
<tr>
<td>KPMG, Watered-down assessment 60–62, 66, 71</td>
</tr>
<tr>
<td>New York regulation of water usage 48</td>
</tr>
<tr>
<td>quality concerns 57–8</td>
</tr>
<tr>
<td>recycling and water treatment technologies 64</td>
</tr>
<tr>
<td>‘slickwater’ 2</td>
</tr>
<tr>
<td>state regulations and trends dealing with water use and quality 48</td>
</tr>
<tr>
<td>supply and pollution concerns, South Africa 219–20, 222–5</td>
</tr>
<tr>
<td>US Clean Water Act 128, 138–9, 191</td>
</tr>
<tr>
<td>well site location and water contamination, New Zealand 242–3</td>
</tr>
<tr>
<td>Weaver, A. 223</td>
</tr>
<tr>
<td>Weiss, E. 25, 306</td>
</tr>
<tr>
<td>well field pro forma financial statement 63</td>
</tr>
<tr>
<td>wells design and construction, New Zealand 242–4</td>
</tr>
<tr>
<td>siting permit process, community responses to local impacts 115–17</td>
</tr>
<tr>
<td>see also drilling; mining</td>
</tr>
<tr>
<td>Wernham, A. 37–9, 42–3</td>
</tr>
<tr>
<td>Wethe, D. 64</td>
</tr>
<tr>
<td>Wildavsky, A. 203–4</td>
</tr>
<tr>
<td>Williamson, J. 81–100, 182, 299–300</td>
</tr>
<tr>
<td>Wilson, J. 178–9</td>
</tr>
<tr>
<td>Witter, R. 44</td>
</tr>
<tr>
<td>Wolf, S. 174</td>
</tr>
<tr>
<td>Wood, J. 166</td>
</tr>
<tr>
<td>World Bank, environmental, social, and health impact (ESHIA) assessment 37</td>
</tr>
<tr>
<td>World Business Council for Sustainable Development (WBCSD) 171</td>
</tr>
<tr>
<td>World Commission on Environment and Development, Our Common Future 20, 190</td>
</tr>
</tbody>
</table>
330

*Shale gas and the future of energy*

World Health Organization (WHO), health impact assessment (HIA) 38–9

Worrell, E. 260

Xianglin, L. 262

Yergin, D. 53

zoning, local government zoning regulation 103, 105–9

see also zoning, community responses to local impacts